### 3.885 $$\int \frac{e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a^2 x^2}}}{x^2} \, dx$$

Optimal. Leaf size=46 $-\frac{(a x+1)^2 \sqrt{c-\frac{c}{a^2 x^2}}}{2 a x^2 \sqrt{1-\frac{1}{a^2 x^2}}}$

[Out]

-(Sqrt[c - c/(a^2*x^2)]*(1 + a*x)^2)/(2*a*Sqrt[1 - 1/(a^2*x^2)]*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.243969, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.12, Rules used = {6197, 6193, 37} $-\frac{(a x+1)^2 \sqrt{c-\frac{c}{a^2 x^2}}}{2 a x^2 \sqrt{1-\frac{1}{a^2 x^2}}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(E^ArcCoth[a*x]*Sqrt[c - c/(a^2*x^2)])/x^2,x]

[Out]

-(Sqrt[c - c/(a^2*x^2)]*(1 + a*x)^2)/(2*a*Sqrt[1 - 1/(a^2*x^2)]*x^2)

Rule 6197

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d/x^2
)^FracPart[p])/(1 - 1/(a^2*x^2))^FracPart[p], Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a
, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
+ a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a^2 x^2}}}{x^2} \, dx &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int \frac{e^{\coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}}}{x^2} \, dx}{\sqrt{1-\frac{1}{a^2 x^2}}}\\ &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int \frac{1+a x}{x^3} \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}}}\\ &=-\frac{\sqrt{c-\frac{c}{a^2 x^2}} (1+a x)^2}{2 a \sqrt{1-\frac{1}{a^2 x^2}} x^2}\\ \end{align*}

Mathematica [A]  time = 0.0233752, size = 47, normalized size = 1.02 $\frac{\left (-\frac{a}{x}-\frac{1}{2 x^2}\right ) \sqrt{c-\frac{c}{a^2 x^2}}}{a \sqrt{1-\frac{1}{a^2 x^2}}}$

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^ArcCoth[a*x]*Sqrt[c - c/(a^2*x^2)])/x^2,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(-1/(2*x^2) - a/x))/(a*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.135, size = 53, normalized size = 1.2 \begin{align*} -{\frac{2\,ax+1}{2\, \left ( ax+1 \right ) x}\sqrt{{\frac{c \left ({a}^{2}{x}^{2}-1 \right ) }{{a}^{2}{x}^{2}}}}{\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2)^(1/2)/x^2,x)

[Out]

-1/2*(2*a*x+1)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)/x/(a*x+1)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a^{2} x^{2}}}}{x^{2} \sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a^2*x^2))/(x^2*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.58009, size = 54, normalized size = 1.17 \begin{align*} -\frac{\sqrt{a^{2} c}{\left (2 \, a x + 1\right )}}{2 \, a^{2} x^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2)^(1/2)/x^2,x, algorithm="fricas")

[Out]

-1/2*sqrt(a^2*c)*(2*a*x + 1)/(a^2*x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a**2/x**2)**(1/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a^{2} x^{2}}}}{x^{2} \sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a^2/x^2)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a^2*x^2))/(x^2*sqrt((a*x - 1)/(a*x + 1))), x)