### 3.53 $$\int e^{-3 \coth ^{-1}(a x)} \, dx$$

Optimal. Leaf size=60 $x \sqrt{1-\frac{1}{a^2 x^2}}+\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a+\frac{1}{x}}-\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{a}$

[Out]

(4*Sqrt[1 - 1/(a^2*x^2)])/(a + x^(-1)) + Sqrt[1 - 1/(a^2*x^2)]*x - (3*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/a

________________________________________________________________________________________

Rubi [A]  time = 0.778659, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 8, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.875, Rules used = {6168, 6742, 264, 266, 63, 208, 651} $x \sqrt{1-\frac{1}{a^2 x^2}}+\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a+\frac{1}{x}}-\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{a}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(-3*ArcCoth[a*x]),x]

[Out]

(4*Sqrt[1 - 1/(a^2*x^2)])/(a + x^(-1)) + Sqrt[1 - 1/(a^2*x^2)]*x - (3*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/a

Rule 6168

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.)), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^2*(1 - x/a)^((n - 1)/2)*Sq
rt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rubi steps

\begin{align*} \int e^{-3 \coth ^{-1}(a x)} \, dx &=-\operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^2}{x^2 \left (1+\frac{x}{a}\right ) \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )\\ &=-\operatorname{Subst}\left (\int \left (\frac{1}{x^2 \sqrt{1-\frac{x^2}{a^2}}}-\frac{3}{a x \sqrt{1-\frac{x^2}{a^2}}}+\frac{4}{a (a+x) \sqrt{1-\frac{x^2}{a^2}}}\right ) \, dx,x,\frac{1}{x}\right )\\ &=\frac{3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{a}-\frac{4 \operatorname{Subst}\left (\int \frac{1}{(a+x) \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{a}-\operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a+\frac{1}{x}}+\sqrt{1-\frac{1}{a^2 x^2}} x+\frac{3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a^2}}} \, dx,x,\frac{1}{x^2}\right )}{2 a}\\ &=\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a+\frac{1}{x}}+\sqrt{1-\frac{1}{a^2 x^2}} x-(3 a) \operatorname{Subst}\left (\int \frac{1}{a^2-a^2 x^2} \, dx,x,\sqrt{1-\frac{1}{a^2 x^2}}\right )\\ &=\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a+\frac{1}{x}}+\sqrt{1-\frac{1}{a^2 x^2}} x-\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{a}\\ \end{align*}

Mathematica [A]  time = 0.0466342, size = 54, normalized size = 0.9 $\frac{x \sqrt{1-\frac{1}{a^2 x^2}} (a x+5)}{a x+1}-\frac{3 \log \left (a x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )}{a}$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(-3*ArcCoth[a*x]),x]

[Out]

(Sqrt[1 - 1/(a^2*x^2)]*x*(5 + a*x))/(1 + a*x) - (3*Log[a*(1 + Sqrt[1 - 1/(a^2*x^2)])*x])/a

________________________________________________________________________________________

Maple [B]  time = 0.129, size = 248, normalized size = 4.1 \begin{align*} -{\frac{1}{ \left ( ax-1 \right ) a} \left ( 3\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ){x}^{2}{a}^{3}-3\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }{x}^{2}{a}^{2}+6\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ) x{a}^{2}+2\, \left ( \left ( ax-1 \right ) \left ( ax+1 \right ) \right ) ^{3/2}\sqrt{{a}^{2}}-6\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }xa+3\,a\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ) -3\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) } \right ) \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}}{\frac{1}{\sqrt{{a}^{2}}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x-1)/(a*x+1))^(3/2),x)

[Out]

-(3*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^2*a^3-3*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*
x^2*a^2+6*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x*a^2+2*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1
/2)-6*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x*a+3*a*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))-
3*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/a*((a*x-1)/(a*x+1))^(3/2)/(a^2)^(1/2)/(a*x-1)/((a*x-1)*(a*x+1))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.03164, size = 150, normalized size = 2.5 \begin{align*} -a{\left (\frac{2 \, \sqrt{\frac{a x - 1}{a x + 1}}}{\frac{{\left (a x - 1\right )} a^{2}}{a x + 1} - a^{2}} + \frac{3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac{4 \, \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

-a*(2*sqrt((a*x - 1)/(a*x + 1))/((a*x - 1)*a^2/(a*x + 1) - a^2) + 3*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 3
*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 - 4*sqrt((a*x - 1)/(a*x + 1))/a^2)

________________________________________________________________________________________

Fricas [A]  time = 1.70101, size = 161, normalized size = 2.68 \begin{align*} \frac{{\left (a x + 5\right )} \sqrt{\frac{a x - 1}{a x + 1}} - 3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) + 3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

((a*x + 5)*sqrt((a*x - 1)/(a*x + 1)) - 3*log(sqrt((a*x - 1)/(a*x + 1)) + 1) + 3*log(sqrt((a*x - 1)/(a*x + 1))
- 1))/a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Integral(((a*x - 1)/(a*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{undef} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

undef