3.495 \(\int \frac{e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^3} \, dx\)

Optimal. Leaf size=77 \[ \frac{2 a^2 c \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{5 \sqrt{c-\frac{c}{a x}}}-\frac{2 a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{15 \left (c-\frac{c}{a x}\right )^{3/2}} \]

[Out]

(-2*a^2*c^2*(1 - 1/(a^2*x^2))^(3/2))/(15*(c - c/(a*x))^(3/2)) + (2*a^2*c*(1 - 1/(a^2*x^2))^(3/2))/(5*Sqrt[c -
c/(a*x)])

________________________________________________________________________________________

Rubi [A]  time = 0.188534, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {6178, 795, 649} \[ \frac{2 a^2 c \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{5 \sqrt{c-\frac{c}{a x}}}-\frac{2 a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{15 \left (c-\frac{c}{a x}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcCoth[a*x]*Sqrt[c - c/(a*x)])/x^3,x]

[Out]

(-2*a^2*c^2*(1 - 1/(a^2*x^2))^(3/2))/(15*(c - c/(a*x))^(3/2)) + (2*a^2*c*(1 - 1/(a^2*x^2))^(3/2))/(5*Sqrt[c -
c/(a*x)])

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rule 795

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(g*(d + e*x)^m
*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(d*g + e*f) + 2*e*f*(p + 1))/(e*(m + 2*p + 2)), Int[(d +
 e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && NeQ[m + 2*p +
2, 0] && NeQ[m, 2]

Rule 649

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
 + 1))/(c*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p,
 0]

Rubi steps

\begin{align*} \int \frac{e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^3} \, dx &=-\left (c \operatorname{Subst}\left (\int \frac{x \sqrt{1-\frac{x^2}{a^2}}}{\sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )\right )\\ &=\frac{2 a^2 c \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{5 \sqrt{c-\frac{c}{a x}}}-\frac{1}{5} (a c) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x^2}{a^2}}}{\sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2 a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{15 \left (c-\frac{c}{a x}\right )^{3/2}}+\frac{2 a^2 c \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}{5 \sqrt{c-\frac{c}{a x}}}\\ \end{align*}

Mathematica [A]  time = 0.102677, size = 58, normalized size = 0.75 \[ \frac{2 a \sqrt{1-\frac{1}{a^2 x^2}} \left (2 a^2 x^2-a x-3\right ) \sqrt{c-\frac{c}{a x}}}{15 x (a x-1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcCoth[a*x]*Sqrt[c - c/(a*x)])/x^3,x]

[Out]

(2*a*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*(-3 - a*x + 2*a^2*x^2))/(15*x*(-1 + a*x))

________________________________________________________________________________________

Maple [A]  time = 0.118, size = 47, normalized size = 0.6 \begin{align*}{\frac{ \left ( 2\,ax+2 \right ) \left ( 2\,ax-3 \right ) }{15\,{x}^{2}}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}}{\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^3,x)

[Out]

2/15*(a*x+1)*(2*a*x-3)*(c*(a*x-1)/a/x)^(1/2)/x^2/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a x}}}{x^{3} \sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))/(x^3*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.62791, size = 140, normalized size = 1.82 \begin{align*} \frac{2 \,{\left (2 \, a^{3} x^{3} + a^{2} x^{2} - 4 \, a x - 3\right )} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{15 \,{\left (a x^{3} - x^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^3,x, algorithm="fricas")

[Out]

2/15*(2*a^3*x^3 + a^2*x^2 - 4*a*x - 3)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(a*x^3 - x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a/x)**(1/2)/x**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a x}}}{x^{3} \sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^3,x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a*x))/(x^3*sqrt((a*x - 1)/(a*x + 1))), x)