### 3.487 $$\int \frac{e^{-3 \coth ^{-1}(a x)}}{(c-\frac{c}{a x})^{5/2}} \, dx$$

Optimal. Leaf size=199 $\frac{x \left (1-\frac{1}{a x}\right )^{5/2}}{\sqrt{\frac{1}{a x}+1} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{2 \left (1-\frac{1}{a x}\right )^{5/2}}{a \sqrt{\frac{1}{a x}+1} \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )}{\sqrt{2} a \left (c-\frac{c}{a x}\right )^{5/2}}$

[Out]

(2*(1 - 1/(a*x))^(5/2))/(a*Sqrt[1 + 1/(a*x)]*(c - c/(a*x))^(5/2)) + ((1 - 1/(a*x))^(5/2)*x)/(Sqrt[1 + 1/(a*x)]
*(c - c/(a*x))^(5/2)) - ((1 - 1/(a*x))^(5/2)*ArcTanh[Sqrt[1 + 1/(a*x)]])/(a*(c - c/(a*x))^(5/2)) - ((1 - 1/(a*
x))^(5/2)*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/(Sqrt[2]*a*(c - c/(a*x))^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.167721, antiderivative size = 199, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.333, Rules used = {6182, 6179, 103, 152, 156, 63, 208, 206} $\frac{x \left (1-\frac{1}{a x}\right )^{5/2}}{\sqrt{\frac{1}{a x}+1} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{2 \left (1-\frac{1}{a x}\right )^{5/2}}{a \sqrt{\frac{1}{a x}+1} \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )}{\sqrt{2} a \left (c-\frac{c}{a x}\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(E^(3*ArcCoth[a*x])*(c - c/(a*x))^(5/2)),x]

[Out]

(2*(1 - 1/(a*x))^(5/2))/(a*Sqrt[1 + 1/(a*x)]*(c - c/(a*x))^(5/2)) + ((1 - 1/(a*x))^(5/2)*x)/(Sqrt[1 + 1/(a*x)]
*(c - c/(a*x))^(5/2)) - ((1 - 1/(a*x))^(5/2)*ArcTanh[Sqrt[1 + 1/(a*x)]])/(a*(c - c/(a*x))^(5/2)) - ((1 - 1/(a*
x))^(5/2)*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/(Sqrt[2]*a*(c - c/(a*x))^(5/2))

Rule 6182

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(c + d/x)^p/(1 + d/(c*x))^
p, Int[u*(1 + d/(c*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&
!IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6179

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1 + (d*x)/c)^
p*(1 + x/a)^(n/2))/(x^2*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0
] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0])

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-3 \coth ^{-1}(a x)}}{\left (c-\frac{c}{a x}\right )^{5/2}} \, dx &=\frac{\left (1-\frac{1}{a x}\right )^{5/2} \int \frac{e^{-3 \coth ^{-1}(a x)}}{\left (1-\frac{1}{a x}\right )^{5/2}} \, dx}{\left (c-\frac{c}{a x}\right )^{5/2}}\\ &=-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-\frac{x}{a}\right ) \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{\left (c-\frac{c}{a x}\right )^{5/2}}\\ &=\frac{\left (1-\frac{1}{a x}\right )^{5/2} x}{\sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} \operatorname{Subst}\left (\int \frac{\frac{1}{2 a}-\frac{3 x}{2 a^2}}{x \left (1-\frac{x}{a}\right ) \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{\left (c-\frac{c}{a x}\right )^{5/2}}\\ &=\frac{2 \left (1-\frac{1}{a x}\right )^{5/2}}{a \sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} x}{\sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (a \left (1-\frac{1}{a x}\right )^{5/2}\right ) \operatorname{Subst}\left (\int \frac{\frac{1}{2 a^2}-\frac{x}{a^3}}{x \left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{\left (c-\frac{c}{a x}\right )^{5/2}}\\ &=\frac{2 \left (1-\frac{1}{a x}\right )^{5/2}}{a \sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} x}{\sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{2 a^2 \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{2 a \left (c-\frac{c}{a x}\right )^{5/2}}\\ &=\frac{2 \left (1-\frac{1}{a x}\right )^{5/2}}{a \sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} x}{\sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} \operatorname{Subst}\left (\int \frac{1}{-a+a x^2} \, dx,x,\sqrt{1+\frac{1}{a x}}\right )}{\left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \operatorname{Subst}\left (\int \frac{1}{2-x^2} \, dx,x,\sqrt{1+\frac{1}{a x}}\right )}{a \left (c-\frac{c}{a x}\right )^{5/2}}\\ &=\frac{2 \left (1-\frac{1}{a x}\right )^{5/2}}{a \sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}+\frac{\left (1-\frac{1}{a x}\right )^{5/2} x}{\sqrt{1+\frac{1}{a x}} \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \tanh ^{-1}\left (\sqrt{1+\frac{1}{a x}}\right )}{a \left (c-\frac{c}{a x}\right )^{5/2}}-\frac{\left (1-\frac{1}{a x}\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt{1+\frac{1}{a x}}}{\sqrt{2}}\right )}{\sqrt{2} a \left (c-\frac{c}{a x}\right )^{5/2}}\\ \end{align*}

Mathematica [C]  time = 0.0624847, size = 90, normalized size = 0.45 $\frac{\sqrt{1-\frac{1}{a x}} \left (\text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{a+\frac{1}{x}}{2 a}\right )+\text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{1}{a x}+1\right )+a x\right )}{a c^2 \sqrt{\frac{1}{a x}+1} \sqrt{c-\frac{c}{a x}}}$

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^(3*ArcCoth[a*x])*(c - c/(a*x))^(5/2)),x]

[Out]

(Sqrt[1 - 1/(a*x)]*(a*x + Hypergeometric2F1[-1/2, 1, 1/2, (a + x^(-1))/(2*a)] + Hypergeometric2F1[-1/2, 1, 1/2
, 1 + 1/(a*x)]))/(a*c^2*Sqrt[1 + 1/(a*x)]*Sqrt[c - c/(a*x)])

________________________________________________________________________________________

Maple [A]  time = 0.187, size = 262, normalized size = 1.3 \begin{align*} -{\frac{ \left ( ax+1 \right ) x}{4\, \left ( ax-1 \right ) ^{2}{c}^{3}} \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( -4\,{a}^{5/2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax+1 \right ) x}x+2\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+2\,ax+1}{\sqrt{a}}} \right ){a}^{2}\sqrt{{a}^{-1}}x+{a}^{{\frac{3}{2}}}\sqrt{2}\ln \left ({\frac{1}{ax-1} \left ( 2\,\sqrt{2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax+1 \right ) x}a+3\,ax+1 \right ) } \right ) x-8\,\sqrt{ \left ( ax+1 \right ) x}{a}^{3/2}\sqrt{{a}^{-1}}+2\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+2\,ax+1}{\sqrt{a}}} \right ) a\sqrt{{a}^{-1}}+\sqrt{2}\ln \left ({\frac{1}{ax-1} \left ( 2\,\sqrt{2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax+1 \right ) x}a+3\,ax+1 \right ) } \right ) \sqrt{a} \right ){\frac{1}{\sqrt{ \left ( ax+1 \right ) x}}}{a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{a}^{-1}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^(5/2),x)

[Out]

-1/4*((a*x-1)/(a*x+1))^(3/2)*(a*x+1)/(a*x-1)^2*(c*(a*x-1)/a/x)^(1/2)*x/a^(3/2)/c^3*(-4*a^(5/2)*(1/a)^(1/2)*((a
*x+1)*x)^(1/2)*x+2*ln(1/2*(2*((a*x+1)*x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2))*a^2*(1/a)^(1/2)*x+a^(3/2)*2^(1/2)*ln(
(2*2^(1/2)*(1/a)^(1/2)*((a*x+1)*x)^(1/2)*a+3*a*x+1)/(a*x-1))*x-8*((a*x+1)*x)^(1/2)*a^(3/2)*(1/a)^(1/2)+2*ln(1/
2*(2*((a*x+1)*x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2))*a*(1/a)^(1/2)+2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((a*x+1)*x)^(
1/2)*a+3*a*x+1)/(a*x-1))*a^(1/2))/(1/a)^(1/2)/((a*x+1)*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}{{\left (c - \frac{c}{a x}\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^(5/2),x, algorithm="maxima")

[Out]

integrate(((a*x - 1)/(a*x + 1))^(3/2)/(c - c/(a*x))^(5/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))**(3/2)/(c-c/a/x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(c-c/a/x)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError