### 3.468 $$\int \frac{e^{-\coth ^{-1}(a x)}}{(c-\frac{c}{a x})^{3/2}} \, dx$$

Optimal. Leaf size=151 $\frac{x \sqrt{\frac{1}{a x}+1} \left (1-\frac{1}{a x}\right )^{3/2}}{\left (c-\frac{c}{a x}\right )^{3/2}}+\frac{\left (1-\frac{1}{a x}\right )^{3/2} \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\sqrt{2} \left (1-\frac{1}{a x}\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}$

[Out]

((1 - 1/(a*x))^(3/2)*Sqrt[1 + 1/(a*x)]*x)/(c - c/(a*x))^(3/2) + ((1 - 1/(a*x))^(3/2)*ArcTanh[Sqrt[1 + 1/(a*x)]
])/(a*(c - c/(a*x))^(3/2)) - (Sqrt[2]*(1 - 1/(a*x))^(3/2)*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/(a*(c - c/(a*x))
^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.139191, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.333, Rules used = {6182, 6179, 103, 21, 83, 63, 208, 206} $\frac{x \sqrt{\frac{1}{a x}+1} \left (1-\frac{1}{a x}\right )^{3/2}}{\left (c-\frac{c}{a x}\right )^{3/2}}+\frac{\left (1-\frac{1}{a x}\right )^{3/2} \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\sqrt{2} \left (1-\frac{1}{a x}\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(E^ArcCoth[a*x]*(c - c/(a*x))^(3/2)),x]

[Out]

((1 - 1/(a*x))^(3/2)*Sqrt[1 + 1/(a*x)]*x)/(c - c/(a*x))^(3/2) + ((1 - 1/(a*x))^(3/2)*ArcTanh[Sqrt[1 + 1/(a*x)]
])/(a*(c - c/(a*x))^(3/2)) - (Sqrt[2]*(1 - 1/(a*x))^(3/2)*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/(a*(c - c/(a*x))
^(3/2))

Rule 6182

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(c + d/x)^p/(1 + d/(c*x))^
p, Int[u*(1 + d/(c*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&
!IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6179

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1 + (d*x)/c)^
p*(1 + x/a)^(n/2))/(x^2*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0
] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0])

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
d*x, a + b*x])

Rule 83

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[(b*e - a*f)/(b*c
- a*d), Int[(e + f*x)^(p - 1)/(a + b*x), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[(e + f*x)^(p - 1)/(c + d*
x), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-\coth ^{-1}(a x)}}{\left (c-\frac{c}{a x}\right )^{3/2}} \, dx &=\frac{\left (1-\frac{1}{a x}\right )^{3/2} \int \frac{e^{-\coth ^{-1}(a x)}}{\left (1-\frac{1}{a x}\right )^{3/2}} \, dx}{\left (c-\frac{c}{a x}\right )^{3/2}}\\ &=-\frac{\left (1-\frac{1}{a x}\right )^{3/2} \operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{\left (c-\frac{c}{a x}\right )^{3/2}}\\ &=\frac{\left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}} x}{\left (c-\frac{c}{a x}\right )^{3/2}}+\frac{\left (1-\frac{1}{a x}\right )^{3/2} \operatorname{Subst}\left (\int \frac{-\frac{1}{2 a}-\frac{x}{2 a^2}}{x \left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{\left (c-\frac{c}{a x}\right )^{3/2}}\\ &=\frac{\left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}} x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\left (1-\frac{1}{a x}\right )^{3/2} \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x}{a}}}{x \left (1-\frac{x}{a}\right )} \, dx,x,\frac{1}{x}\right )}{2 a \left (c-\frac{c}{a x}\right )^{3/2}}\\ &=\frac{\left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}} x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\left (1-\frac{1}{a x}\right )^{3/2} \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{a^2 \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\left (1-\frac{1}{a x}\right )^{3/2} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{2 a \left (c-\frac{c}{a x}\right )^{3/2}}\\ &=\frac{\left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}} x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\left (1-\frac{1}{a x}\right )^{3/2} \operatorname{Subst}\left (\int \frac{1}{-a+a x^2} \, dx,x,\sqrt{1+\frac{1}{a x}}\right )}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\left (2 \left (1-\frac{1}{a x}\right )^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{2-x^2} \, dx,x,\sqrt{1+\frac{1}{a x}}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}\\ &=\frac{\left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}} x}{\left (c-\frac{c}{a x}\right )^{3/2}}+\frac{\left (1-\frac{1}{a x}\right )^{3/2} \tanh ^{-1}\left (\sqrt{1+\frac{1}{a x}}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{\sqrt{2} \left (1-\frac{1}{a x}\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt{1+\frac{1}{a x}}}{\sqrt{2}}\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0680978, size = 91, normalized size = 0.6 $\frac{\left (1-\frac{1}{a x}\right )^{3/2} \left (a x \sqrt{\frac{1}{a x}+1}+\tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )-\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )\right )}{a \left (c-\frac{c}{a x}\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(E^ArcCoth[a*x]*(c - c/(a*x))^(3/2)),x]

[Out]

((1 - 1/(a*x))^(3/2)*(a*Sqrt[1 + 1/(a*x)]*x + ArcTanh[Sqrt[1 + 1/(a*x)]] - Sqrt[2]*ArcTanh[Sqrt[1 + 1/(a*x)]/S
qrt[2]]))/(a*(c - c/(a*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.18, size = 162, normalized size = 1.1 \begin{align*}{\frac{ \left ( ax+1 \right ) x}{2\,{c}^{2} \left ( ax-1 \right ) }\sqrt{{\frac{ax-1}{ax+1}}}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( 2\,\sqrt{ \left ( ax+1 \right ) x}{a}^{3/2}\sqrt{{a}^{-1}}+\ln \left ({\frac{1}{2} \left ( 2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+2\,ax+1 \right ){\frac{1}{\sqrt{a}}}} \right ) a\sqrt{{a}^{-1}}-\sqrt{2}\ln \left ({\frac{1}{ax-1} \left ( 2\,\sqrt{2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax+1 \right ) x}a+3\,ax+1 \right ) } \right ) \sqrt{a} \right ){\frac{1}{\sqrt{ \left ( ax+1 \right ) x}}}{a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{a}^{-1}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x)

[Out]

1/2*((a*x-1)/(a*x+1))^(1/2)*(a*x+1)*(c*(a*x-1)/a/x)^(1/2)*x/a^(3/2)/c^2*(2*((a*x+1)*x)^(1/2)*a^(3/2)*(1/a)^(1/
2)+ln(1/2*(2*((a*x+1)*x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2))*a*(1/a)^(1/2)-2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((a*x
+1)*x)^(1/2)*a+3*a*x+1)/(a*x-1))*a^(1/2))/(a*x-1)/((a*x+1)*x)^(1/2)/(1/a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x - 1}{a x + 1}}}{{\left (c - \frac{c}{a x}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt((a*x - 1)/(a*x + 1))/(c - c/(a*x))^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))**(1/2)/(c-c/a/x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x - 1}{a x + 1}}}{{\left (c - \frac{c}{a x}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt((a*x - 1)/(a*x + 1))/(c - c/(a*x))^(3/2), x)