3.3 \(\int e^{\coth ^{-1}(a x)} x \, dx\)

Optimal. Leaf size=63 \[ \frac{1}{2} x^2 \sqrt{1-\frac{1}{a^2 x^2}}+\frac{x \sqrt{1-\frac{1}{a^2 x^2}}}{a}+\frac{\tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{2 a^2} \]

[Out]

(Sqrt[1 - 1/(a^2*x^2)]*x)/a + (Sqrt[1 - 1/(a^2*x^2)]*x^2)/2 + ArcTanh[Sqrt[1 - 1/(a^2*x^2)]]/(2*a^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0644179, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.75, Rules used = {6169, 835, 807, 266, 63, 208} \[ \frac{1}{2} x^2 \sqrt{1-\frac{1}{a^2 x^2}}+\frac{x \sqrt{1-\frac{1}{a^2 x^2}}}{a}+\frac{\tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{2 a^2} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*x,x]

[Out]

(Sqrt[1 - 1/(a^2*x^2)]*x)/a + (Sqrt[1 - 1/(a^2*x^2)]*x^2)/2 + ArcTanh[Sqrt[1 - 1/(a^2*x^2)]]/(2*a^2)

Rule 6169

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/
a)^((n - 1)/2)*Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] && IntegerQ[m]

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{\coth ^{-1}(a x)} x \, dx &=-\operatorname{Subst}\left (\int \frac{1+\frac{x}{a}}{x^3 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{2} \sqrt{1-\frac{1}{a^2 x^2}} x^2+\frac{1}{2} \operatorname{Subst}\left (\int \frac{-\frac{2}{a}-\frac{x}{a^2}}{x^2 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{\sqrt{1-\frac{1}{a^2 x^2}} x}{a}+\frac{1}{2} \sqrt{1-\frac{1}{a^2 x^2}} x^2-\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{2 a^2}\\ &=\frac{\sqrt{1-\frac{1}{a^2 x^2}} x}{a}+\frac{1}{2} \sqrt{1-\frac{1}{a^2 x^2}} x^2-\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a^2}}} \, dx,x,\frac{1}{x^2}\right )}{4 a^2}\\ &=\frac{\sqrt{1-\frac{1}{a^2 x^2}} x}{a}+\frac{1}{2} \sqrt{1-\frac{1}{a^2 x^2}} x^2+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{a^2-a^2 x^2} \, dx,x,\sqrt{1-\frac{1}{a^2 x^2}}\right )\\ &=\frac{\sqrt{1-\frac{1}{a^2 x^2}} x}{a}+\frac{1}{2} \sqrt{1-\frac{1}{a^2 x^2}} x^2+\frac{\tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{2 a^2}\\ \end{align*}

Mathematica [A]  time = 0.0360467, size = 49, normalized size = 0.78 \[ \frac{a x \sqrt{1-\frac{1}{a^2 x^2}} (a x+2)+\log \left (x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )}{2 a^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x]*x,x]

[Out]

(a*Sqrt[1 - 1/(a^2*x^2)]*x*(2 + a*x) + Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x])/(2*a^2)

________________________________________________________________________________________

Maple [B]  time = 0.123, size = 152, normalized size = 2.4 \begin{align*}{\frac{ax-1}{2\,{a}^{2}} \left ( \sqrt{{a}^{2}}\sqrt{{a}^{2}{x}^{2}-1}xa-\ln \left ({ \left ({a}^{2}x+\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}} \right ){\frac{1}{\sqrt{{a}^{2}}}}} \right ) a+2\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }+2\,a\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{{a}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*x,x)

[Out]

1/2*(a*x-1)*((a^2)^(1/2)*(a^2*x^2-1)^(1/2)*x*a-ln((a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a+2*(a^2)
^(1/2)*((a*x-1)*(a*x+1))^(1/2)+2*a*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2)))/((a*x-1)/(a*x+
1))^(1/2)/((a*x-1)*(a*x+1))^(1/2)/a^2/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 0.982333, size = 173, normalized size = 2.75 \begin{align*} \frac{1}{2} \, a{\left (\frac{2 \,{\left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - 3 \, \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{\frac{2 \,{\left (a x - 1\right )} a^{3}}{a x + 1} - \frac{{\left (a x - 1\right )}^{2} a^{3}}{{\left (a x + 1\right )}^{2}} - a^{3}} + \frac{\log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{3}} - \frac{\log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x,x, algorithm="maxima")

[Out]

1/2*a*(2*(((a*x - 1)/(a*x + 1))^(3/2) - 3*sqrt((a*x - 1)/(a*x + 1)))/(2*(a*x - 1)*a^3/(a*x + 1) - (a*x - 1)^2*
a^3/(a*x + 1)^2 - a^3) + log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^3 - log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^3)

________________________________________________________________________________________

Fricas [A]  time = 1.5686, size = 180, normalized size = 2.86 \begin{align*} \frac{{\left (a^{2} x^{2} + 3 \, a x + 2\right )} \sqrt{\frac{a x - 1}{a x + 1}} + \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{2 \, a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x,x, algorithm="fricas")

[Out]

1/2*((a^2*x^2 + 3*a*x + 2)*sqrt((a*x - 1)/(a*x + 1)) + log(sqrt((a*x - 1)/(a*x + 1)) + 1) - log(sqrt((a*x - 1)
/(a*x + 1)) - 1))/a^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{\frac{a x - 1}{a x + 1}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*x,x)

[Out]

Integral(x/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 1.16286, size = 159, normalized size = 2.52 \begin{align*} \frac{1}{2} \, a{\left (\frac{\log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{3}} - \frac{\log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{3}} - \frac{2 \,{\left (\frac{{\left (a x - 1\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{a x + 1} - 3 \, \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{a^{3}{\left (\frac{a x - 1}{a x + 1} - 1\right )}^{2}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x,x, algorithm="giac")

[Out]

1/2*a*(log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^3 - log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^3 - 2*((a*x - 1)*sqr
t((a*x - 1)/(a*x + 1))/(a*x + 1) - 3*sqrt((a*x - 1)/(a*x + 1)))/(a^3*((a*x - 1)/(a*x + 1) - 1)^2))