3.51 \(\int \frac{\coth ^{-1}(x)}{(a-a x^2)^{5/2}} \, dx\)

Optimal. Leaf size=83 \[ -\frac{2}{3 a^2 \sqrt{a-a x^2}}+\frac{2 x \coth ^{-1}(x)}{3 a^2 \sqrt{a-a x^2}}-\frac{1}{9 a \left (a-a x^2\right )^{3/2}}+\frac{x \coth ^{-1}(x)}{3 a \left (a-a x^2\right )^{3/2}} \]

[Out]

-1/(9*a*(a - a*x^2)^(3/2)) - 2/(3*a^2*Sqrt[a - a*x^2]) + (x*ArcCoth[x])/(3*a*(a - a*x^2)^(3/2)) + (2*x*ArcCoth
[x])/(3*a^2*Sqrt[a - a*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0534298, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {5961, 5959} \[ -\frac{2}{3 a^2 \sqrt{a-a x^2}}+\frac{2 x \coth ^{-1}(x)}{3 a^2 \sqrt{a-a x^2}}-\frac{1}{9 a \left (a-a x^2\right )^{3/2}}+\frac{x \coth ^{-1}(x)}{3 a \left (a-a x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[ArcCoth[x]/(a - a*x^2)^(5/2),x]

[Out]

-1/(9*a*(a - a*x^2)^(3/2)) - 2/(3*a^2*Sqrt[a - a*x^2]) + (x*ArcCoth[x])/(3*a*(a - a*x^2)^(3/2)) + (2*x*ArcCoth
[x])/(3*a^2*Sqrt[a - a*x^2])

Rule 5961

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> -Simp[(b*(d + e*x^2)^(q + 1))
/(4*c*d*(q + 1)^2), x] + (Dist[(2*q + 3)/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x], x] -
 Simp[(x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]))/(2*d*(q + 1)), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*
d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2]

Rule 5959

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> -Simp[b/(c*d*Sqrt[d + e*x^2]
), x] + Simp[(x*(a + b*ArcCoth[c*x]))/(d*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0
]

Rubi steps

\begin{align*} \int \frac{\coth ^{-1}(x)}{\left (a-a x^2\right )^{5/2}} \, dx &=-\frac{1}{9 a \left (a-a x^2\right )^{3/2}}+\frac{x \coth ^{-1}(x)}{3 a \left (a-a x^2\right )^{3/2}}+\frac{2 \int \frac{\coth ^{-1}(x)}{\left (a-a x^2\right )^{3/2}} \, dx}{3 a}\\ &=-\frac{1}{9 a \left (a-a x^2\right )^{3/2}}-\frac{2}{3 a^2 \sqrt{a-a x^2}}+\frac{x \coth ^{-1}(x)}{3 a \left (a-a x^2\right )^{3/2}}+\frac{2 x \coth ^{-1}(x)}{3 a^2 \sqrt{a-a x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0499682, size = 45, normalized size = 0.54 \[ -\frac{\sqrt{a-a x^2} \left (-6 x^2+\left (6 x^3-9 x\right ) \coth ^{-1}(x)+7\right )}{9 a^3 \left (x^2-1\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[x]/(a - a*x^2)^(5/2),x]

[Out]

-(Sqrt[a - a*x^2]*(7 - 6*x^2 + (-9*x + 6*x^3)*ArcCoth[x]))/(9*a^3*(-1 + x^2)^2)

________________________________________________________________________________________

Maple [A]  time = 0.238, size = 112, normalized size = 1.4 \begin{align*}{\frac{ \left ( 1+x \right ) \left ( -1+3\,{\rm arccoth} \left (x\right ) \right ) }{72\, \left ( -1+x \right ) ^{2}{a}^{3}}\sqrt{- \left ( -1+x \right ) \left ( 1+x \right ) a}}-{\frac{3\,{\rm arccoth} \left (x\right )-3}{ \left ( -8+8\,x \right ){a}^{3}}\sqrt{- \left ( -1+x \right ) \left ( 1+x \right ) a}}-{\frac{3\,{\rm arccoth} \left (x\right )+3}{ \left ( 8+8\,x \right ){a}^{3}}\sqrt{- \left ( -1+x \right ) \left ( 1+x \right ) a}}+{\frac{ \left ( 1+3\,{\rm arccoth} \left (x\right ) \right ) \left ( -1+x \right ) }{72\, \left ( 1+x \right ) ^{2}{a}^{3}}\sqrt{- \left ( -1+x \right ) \left ( 1+x \right ) a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(x)/(-a*x^2+a)^(5/2),x)

[Out]

1/72*(1+x)*(-1+3*arccoth(x))*(-(-1+x)*(1+x)*a)^(1/2)/(-1+x)^2/a^3-3/8*(arccoth(x)-1)*(-(-1+x)*(1+x)*a)^(1/2)/(
-1+x)/a^3-3/8*(arccoth(x)+1)*(-(-1+x)*(1+x)*a)^(1/2)/(1+x)/a^3+1/72*(1+3*arccoth(x))*(-1+x)*(-(-1+x)*(1+x)*a)^
(1/2)/(1+x)^2/a^3

________________________________________________________________________________________

Maxima [A]  time = 1.01709, size = 90, normalized size = 1.08 \begin{align*} \frac{1}{3} \,{\left (\frac{2 \, x}{\sqrt{-a x^{2} + a} a^{2}} + \frac{x}{{\left (-a x^{2} + a\right )}^{\frac{3}{2}} a}\right )} \operatorname{arcoth}\left (x\right ) - \frac{2}{3 \, \sqrt{-a x^{2} + a} a^{2}} - \frac{1}{9 \,{\left (-a x^{2} + a\right )}^{\frac{3}{2}} a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(x)/(-a*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

1/3*(2*x/(sqrt(-a*x^2 + a)*a^2) + x/((-a*x^2 + a)^(3/2)*a))*arccoth(x) - 2/3/(sqrt(-a*x^2 + a)*a^2) - 1/9/((-a
*x^2 + a)^(3/2)*a)

________________________________________________________________________________________

Fricas [A]  time = 1.58402, size = 140, normalized size = 1.69 \begin{align*} \frac{\sqrt{-a x^{2} + a}{\left (12 \, x^{2} - 3 \,{\left (2 \, x^{3} - 3 \, x\right )} \log \left (\frac{x + 1}{x - 1}\right ) - 14\right )}}{18 \,{\left (a^{3} x^{4} - 2 \, a^{3} x^{2} + a^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(x)/(-a*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

1/18*sqrt(-a*x^2 + a)*(12*x^2 - 3*(2*x^3 - 3*x)*log((x + 1)/(x - 1)) - 14)/(a^3*x^4 - 2*a^3*x^2 + a^3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{acoth}{\left (x \right )}}{\left (- a \left (x - 1\right ) \left (x + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(x)/(-a*x**2+a)**(5/2),x)

[Out]

Integral(acoth(x)/(-a*(x - 1)*(x + 1))**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{arcoth}\left (x\right )}{{\left (-a x^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(x)/(-a*x^2+a)^(5/2),x, algorithm="giac")

[Out]

integrate(arccoth(x)/(-a*x^2 + a)^(5/2), x)