3.266 \(\int x^5 (a+b \coth ^{-1}(c x)) (d+e \log (1-c^2 x^2)) \, dx\)

Optimal. Leaf size=297 \[ \frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e \log \left (1-c^2 x^2\right ) \left (a+b \coth ^{-1}(c x)\right )}{6 c^6}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )+\frac{b x^3 (3 d-e)}{54 c^3}+\frac{b x (3 d-e)}{18 c^5}-\frac{b (3 d-e) \tanh ^{-1}(c x)}{18 c^6}-\frac{47 b e x^3}{540 c^3}+\frac{b e x^5 \log \left (1-c^2 x^2\right )}{30 c}+\frac{b e x^3 \log \left (1-c^2 x^2\right )}{18 c^3}+\frac{b e x \log \left (1-c^2 x^2\right )}{6 c^5}-\frac{137 b e x}{180 c^5}+\frac{137 b e \tanh ^{-1}(c x)}{180 c^6}+\frac{b x^5 (3 d-e)}{90 c}-\frac{b e x^5}{75 c} \]

[Out]

(b*(3*d - e)*x)/(18*c^5) - (137*b*e*x)/(180*c^5) + (b*(3*d - e)*x^3)/(54*c^3) - (47*b*e*x^3)/(540*c^3) + (b*(3
*d - e)*x^5)/(90*c) - (b*e*x^5)/(75*c) - (e*x^2*(a + b*ArcCoth[c*x]))/(6*c^4) - (e*x^4*(a + b*ArcCoth[c*x]))/(
12*c^2) - (e*x^6*(a + b*ArcCoth[c*x]))/18 - (b*(3*d - e)*ArcTanh[c*x])/(18*c^6) + (137*b*e*ArcTanh[c*x])/(180*
c^6) + (b*e*x*Log[1 - c^2*x^2])/(6*c^5) + (b*e*x^3*Log[1 - c^2*x^2])/(18*c^3) + (b*e*x^5*Log[1 - c^2*x^2])/(30
*c) - (e*(a + b*ArcCoth[c*x])*Log[1 - c^2*x^2])/(6*c^6) + (x^6*(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]))/
6

________________________________________________________________________________________

Rubi [A]  time = 0.385512, antiderivative size = 297, normalized size of antiderivative = 1., number of steps used = 23, number of rules used = 11, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.407, Rules used = {2454, 2395, 43, 6084, 321, 207, 302, 2528, 2448, 206, 2455} \[ \frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e \log \left (1-c^2 x^2\right ) \left (a+b \coth ^{-1}(c x)\right )}{6 c^6}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )+\frac{b x^3 (3 d-e)}{54 c^3}+\frac{b x (3 d-e)}{18 c^5}-\frac{b (3 d-e) \tanh ^{-1}(c x)}{18 c^6}-\frac{47 b e x^3}{540 c^3}+\frac{b e x^5 \log \left (1-c^2 x^2\right )}{30 c}+\frac{b e x^3 \log \left (1-c^2 x^2\right )}{18 c^3}+\frac{b e x \log \left (1-c^2 x^2\right )}{6 c^5}-\frac{137 b e x}{180 c^5}+\frac{137 b e \tanh ^{-1}(c x)}{180 c^6}+\frac{b x^5 (3 d-e)}{90 c}-\frac{b e x^5}{75 c} \]

Antiderivative was successfully verified.

[In]

Int[x^5*(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]),x]

[Out]

(b*(3*d - e)*x)/(18*c^5) - (137*b*e*x)/(180*c^5) + (b*(3*d - e)*x^3)/(54*c^3) - (47*b*e*x^3)/(540*c^3) + (b*(3
*d - e)*x^5)/(90*c) - (b*e*x^5)/(75*c) - (e*x^2*(a + b*ArcCoth[c*x]))/(6*c^4) - (e*x^4*(a + b*ArcCoth[c*x]))/(
12*c^2) - (e*x^6*(a + b*ArcCoth[c*x]))/18 - (b*(3*d - e)*ArcTanh[c*x])/(18*c^6) + (137*b*e*ArcTanh[c*x])/(180*
c^6) + (b*e*x*Log[1 - c^2*x^2])/(6*c^5) + (b*e*x^3*Log[1 - c^2*x^2])/(18*c^3) + (b*e*x^5*Log[1 - c^2*x^2])/(30
*c) - (e*(a + b*ArcCoth[c*x])*Log[1 - c^2*x^2])/(6*c^6) + (x^6*(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]))/
6

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6084

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Wit
h[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcCoth[c*x], u, x] - Dist[b*c, Int[ExpandIntegrand
[u/(1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2528

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*(RGx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*
RFx^p])^n, RGx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalF
unctionQ[RGx, x] && IGtQ[n, 0]

Rule 2448

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)], x_Symbol] :> Simp[x*Log[c*(d + e*x^n)^p], x] - Dist[e*n*p, Int[
x^n/(d + e*x^n), x], x] /; FreeQ[{c, d, e, n, p}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2455

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[((f*x)^(m
+ 1)*(a + b*Log[c*(d + e*x^n)^p]))/(f*(m + 1)), x] - Dist[(b*e*n*p)/(f*(m + 1)), Int[(x^(n - 1)*(f*x)^(m + 1))
/(d + e*x^n), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int x^5 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx &=-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )-(b c) \int \left (\frac{e x^2}{6 c^4 \left (-1+c^2 x^2\right )}+\frac{e x^4}{12 c^2 \left (-1+c^2 x^2\right )}-\frac{d \left (1-\frac{e}{3 d}\right ) x^6}{6 \left (-1+c^2 x^2\right )}-\frac{e \left (1+c^2 x^2+c^4 x^4\right ) \log \left (1-c^2 x^2\right )}{6 c^6}\right ) \, dx\\ &=-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac{1}{18} (b c (3 d-e)) \int \frac{x^6}{-1+c^2 x^2} \, dx+\frac{(b e) \int \left (1+c^2 x^2+c^4 x^4\right ) \log \left (1-c^2 x^2\right ) \, dx}{6 c^5}-\frac{(b e) \int \frac{x^2}{-1+c^2 x^2} \, dx}{6 c^3}-\frac{(b e) \int \frac{x^4}{-1+c^2 x^2} \, dx}{12 c}\\ &=-\frac{b e x}{6 c^5}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac{1}{18} (b c (3 d-e)) \int \left (\frac{1}{c^6}+\frac{x^2}{c^4}+\frac{x^4}{c^2}+\frac{1}{c^6 \left (-1+c^2 x^2\right )}\right ) \, dx-\frac{(b e) \int \frac{1}{-1+c^2 x^2} \, dx}{6 c^5}+\frac{(b e) \int \left (\log \left (1-c^2 x^2\right )+c^2 x^2 \log \left (1-c^2 x^2\right )+c^4 x^4 \log \left (1-c^2 x^2\right )\right ) \, dx}{6 c^5}-\frac{(b e) \int \left (\frac{1}{c^4}+\frac{x^2}{c^2}+\frac{1}{c^4 \left (-1+c^2 x^2\right )}\right ) \, dx}{12 c}\\ &=\frac{b (3 d-e) x}{18 c^5}-\frac{b e x}{4 c^5}+\frac{b (3 d-e) x^3}{54 c^3}-\frac{b e x^3}{36 c^3}+\frac{b (3 d-e) x^5}{90 c}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )+\frac{b e \tanh ^{-1}(c x)}{6 c^6}-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac{(b (3 d-e)) \int \frac{1}{-1+c^2 x^2} \, dx}{18 c^5}-\frac{(b e) \int \frac{1}{-1+c^2 x^2} \, dx}{12 c^5}+\frac{(b e) \int \log \left (1-c^2 x^2\right ) \, dx}{6 c^5}+\frac{(b e) \int x^2 \log \left (1-c^2 x^2\right ) \, dx}{6 c^3}+\frac{(b e) \int x^4 \log \left (1-c^2 x^2\right ) \, dx}{6 c}\\ &=\frac{b (3 d-e) x}{18 c^5}-\frac{b e x}{4 c^5}+\frac{b (3 d-e) x^3}{54 c^3}-\frac{b e x^3}{36 c^3}+\frac{b (3 d-e) x^5}{90 c}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{b (3 d-e) \tanh ^{-1}(c x)}{18 c^6}+\frac{b e \tanh ^{-1}(c x)}{4 c^6}+\frac{b e x \log \left (1-c^2 x^2\right )}{6 c^5}+\frac{b e x^3 \log \left (1-c^2 x^2\right )}{18 c^3}+\frac{b e x^5 \log \left (1-c^2 x^2\right )}{30 c}-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac{(b e) \int \frac{x^2}{1-c^2 x^2} \, dx}{3 c^3}+\frac{(b e) \int \frac{x^4}{1-c^2 x^2} \, dx}{9 c}+\frac{1}{15} (b c e) \int \frac{x^6}{1-c^2 x^2} \, dx\\ &=\frac{b (3 d-e) x}{18 c^5}-\frac{7 b e x}{12 c^5}+\frac{b (3 d-e) x^3}{54 c^3}-\frac{b e x^3}{36 c^3}+\frac{b (3 d-e) x^5}{90 c}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{b (3 d-e) \tanh ^{-1}(c x)}{18 c^6}+\frac{b e \tanh ^{-1}(c x)}{4 c^6}+\frac{b e x \log \left (1-c^2 x^2\right )}{6 c^5}+\frac{b e x^3 \log \left (1-c^2 x^2\right )}{18 c^3}+\frac{b e x^5 \log \left (1-c^2 x^2\right )}{30 c}-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac{(b e) \int \frac{1}{1-c^2 x^2} \, dx}{3 c^5}+\frac{(b e) \int \left (-\frac{1}{c^4}-\frac{x^2}{c^2}+\frac{1}{c^4 \left (1-c^2 x^2\right )}\right ) \, dx}{9 c}+\frac{1}{15} (b c e) \int \left (-\frac{1}{c^6}-\frac{x^2}{c^4}-\frac{x^4}{c^2}+\frac{1}{c^6 \left (1-c^2 x^2\right )}\right ) \, dx\\ &=\frac{b (3 d-e) x}{18 c^5}-\frac{137 b e x}{180 c^5}+\frac{b (3 d-e) x^3}{54 c^3}-\frac{47 b e x^3}{540 c^3}+\frac{b (3 d-e) x^5}{90 c}-\frac{b e x^5}{75 c}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{b (3 d-e) \tanh ^{-1}(c x)}{18 c^6}+\frac{7 b e \tanh ^{-1}(c x)}{12 c^6}+\frac{b e x \log \left (1-c^2 x^2\right )}{6 c^5}+\frac{b e x^3 \log \left (1-c^2 x^2\right )}{18 c^3}+\frac{b e x^5 \log \left (1-c^2 x^2\right )}{30 c}-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac{(b e) \int \frac{1}{1-c^2 x^2} \, dx}{15 c^5}+\frac{(b e) \int \frac{1}{1-c^2 x^2} \, dx}{9 c^5}\\ &=\frac{b (3 d-e) x}{18 c^5}-\frac{137 b e x}{180 c^5}+\frac{b (3 d-e) x^3}{54 c^3}-\frac{47 b e x^3}{540 c^3}+\frac{b (3 d-e) x^5}{90 c}-\frac{b e x^5}{75 c}-\frac{e x^2 \left (a+b \coth ^{-1}(c x)\right )}{6 c^4}-\frac{e x^4 \left (a+b \coth ^{-1}(c x)\right )}{12 c^2}-\frac{1}{18} e x^6 \left (a+b \coth ^{-1}(c x)\right )-\frac{b (3 d-e) \tanh ^{-1}(c x)}{18 c^6}+\frac{137 b e \tanh ^{-1}(c x)}{180 c^6}+\frac{b e x \log \left (1-c^2 x^2\right )}{6 c^5}+\frac{b e x^3 \log \left (1-c^2 x^2\right )}{18 c^3}+\frac{b e x^5 \log \left (1-c^2 x^2\right )}{30 c}-\frac{e \left (a+b \coth ^{-1}(c x)\right ) \log \left (1-c^2 x^2\right )}{6 c^6}+\frac{1}{6} x^6 \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )\\ \end{align*}

Mathematica [A]  time = 0.171192, size = 236, normalized size = 0.79 \[ \frac{20 e \log \left (1-c^2 x^2\right ) \left (15 a c^6 x^6+b c x \left (3 c^4 x^4+5 c^2 x^2+15\right )+15 b \left (c^6 x^6-1\right ) \coth ^{-1}(c x)\right )+15 \log (1-c x) (-20 a e+10 b d-49 b e)-15 \log (c x+1) (20 a e+10 b d-49 b e)+100 a c^6 x^6 (3 d-e)-150 a c^4 e x^4-300 a c^2 e x^2+4 b c^5 x^5 (15 d-11 e)+10 b c^3 x^3 (10 d-19 e)-50 b c^2 x^2 \coth ^{-1}(c x) \left (e \left (2 c^4 x^4+3 c^2 x^2+6\right )-6 c^4 d x^4\right )+30 b c x (10 d-49 e)}{1800 c^6} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5*(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]),x]

[Out]

(30*b*c*(10*d - 49*e)*x - 300*a*c^2*e*x^2 + 10*b*c^3*(10*d - 19*e)*x^3 - 150*a*c^4*e*x^4 + 4*b*c^5*(15*d - 11*
e)*x^5 + 100*a*c^6*(3*d - e)*x^6 - 50*b*c^2*x^2*(-6*c^4*d*x^4 + e*(6 + 3*c^2*x^2 + 2*c^4*x^4))*ArcCoth[c*x] +
15*(10*b*d - 20*a*e - 49*b*e)*Log[1 - c*x] - 15*(10*b*d + 20*a*e - 49*b*e)*Log[1 + c*x] + 20*e*(15*a*c^6*x^6 +
 b*c*x*(15 + 5*c^2*x^2 + 3*c^4*x^4) + 15*b*(-1 + c^6*x^6)*ArcCoth[c*x])*Log[1 - c^2*x^2])/(1800*c^6)

________________________________________________________________________________________

Maple [C]  time = 10.293, size = 4034, normalized size = 13.6 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b*arccoth(c*x))*(d+e*ln(-c^2*x^2+1)),x)

[Out]

-1/3*b*ln((c*x+1)/(c*x-1)-1)*arccoth(c*x)*x^6*e+1/3*b*ln(2)*arccoth(c*x)*x^6*e-1/3/c^5*b*ln((c*x+1)/(c*x-1)-1)
*x*e-1/12/c^2*b*arccoth(c*x)*x^4*e-1/6/c^4*b*arccoth(c*x)*x^2*e-1/3/c^6*b*arccoth(c*x)*ln(2)*e+1/3/c^6*b*arcco
th(c*x)*e*ln((c*x+1)/(c*x-1)-1)+1/15/c*b*ln(2)*x^5*e+1/3/c^5*b*ln(2)*x*e+1/9/c^3*b*ln(2)*x^3*e-1/15/c*b*ln((c*
x+1)/(c*x-1)-1)*x^5*e-1/9/c^3*b*ln((c*x+1)/(c*x-1)-1)*x^3*e-23/90/c^6*b*d-49/60*b*e*x/c^5-19/180*b*e*x^3/c^3-1
1/450*b*e*x^5/c-1/12*I/c^6*b*arccoth(c*x)*Pi*e*csgn(I*((c*x+1)/(c*x-1)-1)^2)*csgn(I*((c*x+1)/(c*x-1)-1))^2-1/6
0*I/c*b*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*Pi*x^5*e-1/36*I/c^3*b*csgn(I*(c*x+1)/(c*x-1)
)*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*Pi*x^3*e-1/12*I/c^5*b*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x-1)/(c*x+1))^(1/
2))^2*Pi*x*e+1/18*I/c^3*b*csgn(I*(c*x+1)/(c*x-1))^2*csgn(I/((c*x-1)/(c*x+1))^(1/2))*Pi*x^3*e+1/60*I/c*b*csgn(I
*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*x^5*e+1/36*I/c^3*b*csgn(I*(c*x+1)/(
c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*x^3*e+1/12*I/c^5*b*csgn(I*(c*x+1)/(c*x-1)/((c
*x+1)/(c*x-1)-1)^2)^2*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*x*e-1/30*I/c*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(
(c*x+1)/(c*x-1)-1))*Pi*x^5*e+71/75/c^6*b*e-1/6*I*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*((c*x+1)/(c*x-1)-1))
*Pi*arccoth(c*x)*x^6*e+1/6*I*b*csgn(I*(c*x+1)/(c*x-1))^2*csgn(I/((c*x-1)/(c*x+1))^(1/2))*Pi*arccoth(c*x)*x^6*e
-1/12*I*b*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*Pi*arccoth(c*x)*x^6*e+1/12*I*b*csgn(I*(c*x
+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*arccoth(c*x)*x^6*e+1/12*I*b*csgn(I*(c*x+
1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))*Pi*arccoth(c*x)*x^6*e+1/12*I*b*csgn(I*((c*x+1)/(c*
x-1)-1)^2)*csgn(I*((c*x+1)/(c*x-1)-1))^2*Pi*arccoth(c*x)*x^6*e-1/12*I/c^6*b*arccoth(c*x)*Pi*e*csgn(I*(c*x+1)/(
c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))-1/18*I/c^3*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*((
c*x+1)/(c*x-1)-1))*Pi*x^3*e+1/30*I/c*b*csgn(I*(c*x+1)/(c*x-1))^2*csgn(I/((c*x-1)/(c*x+1))^(1/2))*Pi*x^5*e+1/6*
I/c^5*b*csgn(I*(c*x+1)/(c*x-1))^2*csgn(I/((c*x-1)/(c*x+1))^(1/2))*Pi*x*e+1/60*I/c*b*csgn(I*((c*x+1)/(c*x-1)-1)
^2)*csgn(I*((c*x+1)/(c*x-1)-1))^2*Pi*x^5*e+1/36*I/c^3*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)*csgn(I*((c*x+1)/(c*x-1)-
1))^2*Pi*x^3*e+1/60*I/c*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))*Pi*x^5*e+1/1
2*I/c^5*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))*Pi*x*e+1/36*I/c^3*b*csgn(I*(
c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))*Pi*x^3*e-1/18*a*e*x^6+1/6*x^6*a*d+23/180*I/c^6
*b*e*Pi*csgn(I/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1))-1/
12*I/c^6*b*arccoth(c*x)*e*Pi*csgn(I/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2-1/6
*I/c^5*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*((c*x+1)/(c*x-1)-1))*Pi*x*e+1/6*I/c^6*b*arccoth(c*x)*e*Pi*csgn
(I*((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*((c*x+1)/(c*x-1)-1))-1/6*I/c^6*b*arccoth(c*x)*e*Pi*csgn(I/((c*x-1)/(c*x+1))
^(1/2))*csgn(I*(c*x+1)/(c*x-1))^2+1/12*I/c^6*b*arccoth(c*x)*Pi*e*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*csgn(I*(c*x
+1)/(c*x-1))+1/12*I/c^5*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)*csgn(I*((c*x+1)/(c*x-1)-1))^2*Pi*x*e-1/36*I/c^3*b*csgn
(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*x^3*e-1/12*
I/c^5*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi
*x*e+1/12*I/c^6*b*arccoth(c*x)*e*Pi*csgn(I/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2
)*csgn(I*(c*x+1)/(c*x-1))-1/60*I/c*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1))*csg
n(I/((c*x+1)/(c*x-1)-1)^2)*Pi*x^5*e-1/12*I*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x
-1))*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*arccoth(c*x)*x^6*e-1/12*I/c^6*b*arccoth(c*x)*e*Pi*csgn(I*((c*x+1)/(c*x-1
)-1)^2)^3-1/12*I/c^6*b*arccoth(c*x)*Pi*e*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3+1/6*I/c^6*b*arccoth(c
*x)*e*Pi*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2-23/180*I/c^6*b*e*Pi*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(
c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))+23/180*I/c^6*b*e*Pi*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*csgn(I*(c*x+1)/(c
*x-1))-23/90*I/c^6*b*e*Pi+1/36*I/c^3*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^3*Pi*x^3*e+1/12*I/c^6*b*arccoth(c*x)*e*Pi
*csgn(I*(c*x+1)/(c*x-1))^3+1/12*I*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3*Pi*arccoth(c*x)*x^6*e-1/6*
I*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*Pi*arccoth(c*x)*x^6*e-1/12*I*b*csgn(I*(c*x+1)/(c*x-1))^3*P
i*arccoth(c*x)*x^6*e+1/12*I*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^3*Pi*arccoth(c*x)*x^6*e+1/12*I/c^5*b*csgn(I*((c*x+
1)/(c*x-1)-1)^2)^3*Pi*x*e-23/90*I/c^6*b*e*Pi*csgn(I/((c*x-1)/(c*x+1))^(1/2))*csgn(I*(c*x+1)/(c*x-1))^2-23/180*
I/c^6*b*e*Pi*csgn(I/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2-23/180*I/c^6*b*e*Pi
*csgn(I*((c*x+1)/(c*x-1)-1)^2)*csgn(I*((c*x+1)/(c*x-1)-1))^2+23/90*I/c^6*b*e*Pi*csgn(I*((c*x+1)/(c*x-1)-1)^2)^
2*csgn(I*((c*x+1)/(c*x-1)-1))-1/60*I/c*b*csgn(I*(c*x+1)/(c*x-1))^3*Pi*x^5*e-1/36*I/c^3*b*csgn(I*(c*x+1)/(c*x-1
))^3*Pi*x^3*e-1/12*I/c^5*b*csgn(I*(c*x+1)/(c*x-1))^3*Pi*x*e+1/60*I/c*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)
-1)^2)^3*Pi*x^5*e+1/36*I/c^3*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3*Pi*x^3*e+1/12*I/c^5*b*csgn(I*(c
*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3*Pi*x*e-1/30*I/c*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*Pi*x^
5*e-1/18*I/c^3*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*Pi*x^3*e-1/6*I/c^5*b*csgn(I*(c*x+1)/(c*x-1)/(
(c*x+1)/(c*x-1)-1)^2)^2*Pi*x*e+1/60*I/c*b*csgn(I*((c*x+1)/(c*x-1)-1)^2)^3*Pi*x^5*e-23/180*I/c^6*b*e*Pi*csgn(I*
((c*x+1)/(c*x-1)-1)^2)^3+23/180*I/c^6*b*e*Pi*csgn(I*(c*x+1)/(c*x-1))^3-23/180*I/c^6*b*e*Pi*csgn(I*(c*x+1)/(c*x
-1)/((c*x+1)/(c*x-1)-1)^2)^3+23/90*I/c^6*b*e*Pi*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2-1/6*I/c^6*b*Pi
*e*arccoth(c*x)+1/30*I/c*b*Pi*x^5*e+1/18*I/c^3*b*Pi*x^3*e+1/6*I/c^5*b*Pi*x*e+1/6*I*b*Pi*arccoth(c*x)*x^6*e-1/9
0/c^6*b*e*(15*arccoth(c*x)*x^5*c^5+15*arccoth(c*x)*x^4*c^4+3*c^4*x^4+15*arccoth(c*x)*x^3*c^3+3*c^3*x^3+15*arcc
oth(c*x)*x^2*c^2+8*c^2*x^2+15*arccoth(c*x)*x*c+8*c*x+15*arccoth(c*x)+23)*(c*x-1)*ln((c*x-1)/(c*x+1))-1/12*a*e/
c^2*x^4-1/6*a*e/c^4*x^2+1/6*a*e*x^6*ln(-c^2*x^2+1)-1/6*a*e/c^6*ln(c^2*x^2-1)-1/6/c^6*b*arccoth(c*x)*d+1/18/c^3
*b*x^3*d+1/6/c^5*b*x*d+1/30/c*b*x^5*d-1/18*b*arccoth(c*x)*x^6*e+1/6*b*arccoth(c*x)*x^6*d+239/180/c^6*b*arccoth
(c*x)*e-23/45/c^6*b*e*ln(2)

________________________________________________________________________________________

Maxima [C]  time = 1.11322, size = 447, normalized size = 1.51 \begin{align*} \frac{1}{6} \, a d x^{6} + \frac{1}{36} \,{\left (6 \, x^{6} \log \left (-c^{2} x^{2} + 1\right ) - c^{2}{\left (\frac{2 \, c^{4} x^{6} + 3 \, c^{2} x^{4} + 6 \, x^{2}}{c^{6}} + \frac{6 \, \log \left (c^{2} x^{2} - 1\right )}{c^{8}}\right )}\right )} b e \operatorname{arcoth}\left (c x\right ) + \frac{1}{180} \,{\left (30 \, x^{6} \operatorname{arcoth}\left (c x\right ) + c{\left (\frac{2 \,{\left (3 \, c^{4} x^{5} + 5 \, c^{2} x^{3} + 15 \, x\right )}}{c^{6}} - \frac{15 \, \log \left (c x + 1\right )}{c^{7}} + \frac{15 \, \log \left (c x - 1\right )}{c^{7}}\right )}\right )} b d + \frac{1}{36} \,{\left (6 \, x^{6} \log \left (-c^{2} x^{2} + 1\right ) - c^{2}{\left (\frac{2 \, c^{4} x^{6} + 3 \, c^{2} x^{4} + 6 \, x^{2}}{c^{6}} + \frac{6 \, \log \left (c^{2} x^{2} - 1\right )}{c^{8}}\right )}\right )} a e - \frac{{\left (4 \,{\left (-15 i \, \pi c^{5} + 11 \, c^{5}\right )} x^{5} + 10 \,{\left (-10 i \, \pi c^{3} + 19 \, c^{3}\right )} x^{3} + 30 \,{\left (-10 i \, \pi c + 49 \, c\right )} x -{\left (-150 i \, \pi + 60 \, c^{5} x^{5} + 100 \, c^{3} x^{3} + 300 \, c x + 735\right )} \log \left (c x + 1\right ) -{\left (150 i \, \pi + 60 \, c^{5} x^{5} + 100 \, c^{3} x^{3} + 300 \, c x - 735\right )} \log \left (c x - 1\right )\right )} b e}{1800 \, c^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="maxima")

[Out]

1/6*a*d*x^6 + 1/36*(6*x^6*log(-c^2*x^2 + 1) - c^2*((2*c^4*x^6 + 3*c^2*x^4 + 6*x^2)/c^6 + 6*log(c^2*x^2 - 1)/c^
8))*b*e*arccoth(c*x) + 1/180*(30*x^6*arccoth(c*x) + c*(2*(3*c^4*x^5 + 5*c^2*x^3 + 15*x)/c^6 - 15*log(c*x + 1)/
c^7 + 15*log(c*x - 1)/c^7))*b*d + 1/36*(6*x^6*log(-c^2*x^2 + 1) - c^2*((2*c^4*x^6 + 3*c^2*x^4 + 6*x^2)/c^6 + 6
*log(c^2*x^2 - 1)/c^8))*a*e - 1/1800*(4*(-15*I*pi*c^5 + 11*c^5)*x^5 + 10*(-10*I*pi*c^3 + 19*c^3)*x^3 + 30*(-10
*I*pi*c + 49*c)*x - (-150*I*pi + 60*c^5*x^5 + 100*c^3*x^3 + 300*c*x + 735)*log(c*x + 1) - (150*I*pi + 60*c^5*x
^5 + 100*c^3*x^3 + 300*c*x - 735)*log(c*x - 1))*b*e/c^6

________________________________________________________________________________________

Fricas [A]  time = 1.69584, size = 579, normalized size = 1.95 \begin{align*} -\frac{150 \, a c^{4} e x^{4} - 100 \,{\left (3 \, a c^{6} d - a c^{6} e\right )} x^{6} + 300 \, a c^{2} e x^{2} - 4 \,{\left (15 \, b c^{5} d - 11 \, b c^{5} e\right )} x^{5} - 10 \,{\left (10 \, b c^{3} d - 19 \, b c^{3} e\right )} x^{3} - 30 \,{\left (10 \, b c d - 49 \, b c e\right )} x - 20 \,{\left (15 \, a c^{6} e x^{6} + 3 \, b c^{5} e x^{5} + 5 \, b c^{3} e x^{3} + 15 \, b c e x - 15 \, a e\right )} \log \left (-c^{2} x^{2} + 1\right ) + 5 \,{\left (15 \, b c^{4} e x^{4} - 10 \,{\left (3 \, b c^{6} d - b c^{6} e\right )} x^{6} + 30 \, b c^{2} e x^{2} + 30 \, b d - 147 \, b e - 30 \,{\left (b c^{6} e x^{6} - b e\right )} \log \left (-c^{2} x^{2} + 1\right )\right )} \log \left (\frac{c x + 1}{c x - 1}\right )}{1800 \, c^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="fricas")

[Out]

-1/1800*(150*a*c^4*e*x^4 - 100*(3*a*c^6*d - a*c^6*e)*x^6 + 300*a*c^2*e*x^2 - 4*(15*b*c^5*d - 11*b*c^5*e)*x^5 -
 10*(10*b*c^3*d - 19*b*c^3*e)*x^3 - 30*(10*b*c*d - 49*b*c*e)*x - 20*(15*a*c^6*e*x^6 + 3*b*c^5*e*x^5 + 5*b*c^3*
e*x^3 + 15*b*c*e*x - 15*a*e)*log(-c^2*x^2 + 1) + 5*(15*b*c^4*e*x^4 - 10*(3*b*c^6*d - b*c^6*e)*x^6 + 30*b*c^2*e
*x^2 + 30*b*d - 147*b*e - 30*(b*c^6*e*x^6 - b*e)*log(-c^2*x^2 + 1))*log((c*x + 1)/(c*x - 1)))/c^6

________________________________________________________________________________________

Sympy [A]  time = 113.193, size = 362, normalized size = 1.22 \begin{align*} \begin{cases} \frac{a d x^{6}}{6} + \frac{a e x^{6} \log{\left (- c^{2} x^{2} + 1 \right )}}{6} - \frac{a e x^{6}}{18} - \frac{a e x^{4}}{12 c^{2}} - \frac{a e x^{2}}{6 c^{4}} - \frac{a e \log{\left (- c^{2} x^{2} + 1 \right )}}{6 c^{6}} + \frac{b d x^{6} \operatorname{acoth}{\left (c x \right )}}{6} + \frac{b e x^{6} \log{\left (- c^{2} x^{2} + 1 \right )} \operatorname{acoth}{\left (c x \right )}}{6} - \frac{b e x^{6} \operatorname{acoth}{\left (c x \right )}}{18} + \frac{b d x^{5}}{30 c} + \frac{b e x^{5} \log{\left (- c^{2} x^{2} + 1 \right )}}{30 c} - \frac{11 b e x^{5}}{450 c} - \frac{b e x^{4} \operatorname{acoth}{\left (c x \right )}}{12 c^{2}} + \frac{b d x^{3}}{18 c^{3}} + \frac{b e x^{3} \log{\left (- c^{2} x^{2} + 1 \right )}}{18 c^{3}} - \frac{19 b e x^{3}}{180 c^{3}} - \frac{b e x^{2} \operatorname{acoth}{\left (c x \right )}}{6 c^{4}} + \frac{b d x}{6 c^{5}} + \frac{b e x \log{\left (- c^{2} x^{2} + 1 \right )}}{6 c^{5}} - \frac{49 b e x}{60 c^{5}} - \frac{b d \operatorname{acoth}{\left (c x \right )}}{6 c^{6}} - \frac{b e \log{\left (- c^{2} x^{2} + 1 \right )} \operatorname{acoth}{\left (c x \right )}}{6 c^{6}} + \frac{49 b e \operatorname{acoth}{\left (c x \right )}}{60 c^{6}} & \text{for}\: c \neq 0 \\\frac{d x^{6} \left (a + \frac{i \pi b}{2}\right )}{6} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b*acoth(c*x))*(d+e*ln(-c**2*x**2+1)),x)

[Out]

Piecewise((a*d*x**6/6 + a*e*x**6*log(-c**2*x**2 + 1)/6 - a*e*x**6/18 - a*e*x**4/(12*c**2) - a*e*x**2/(6*c**4)
- a*e*log(-c**2*x**2 + 1)/(6*c**6) + b*d*x**6*acoth(c*x)/6 + b*e*x**6*log(-c**2*x**2 + 1)*acoth(c*x)/6 - b*e*x
**6*acoth(c*x)/18 + b*d*x**5/(30*c) + b*e*x**5*log(-c**2*x**2 + 1)/(30*c) - 11*b*e*x**5/(450*c) - b*e*x**4*aco
th(c*x)/(12*c**2) + b*d*x**3/(18*c**3) + b*e*x**3*log(-c**2*x**2 + 1)/(18*c**3) - 19*b*e*x**3/(180*c**3) - b*e
*x**2*acoth(c*x)/(6*c**4) + b*d*x/(6*c**5) + b*e*x*log(-c**2*x**2 + 1)/(6*c**5) - 49*b*e*x/(60*c**5) - b*d*aco
th(c*x)/(6*c**6) - b*e*log(-c**2*x**2 + 1)*acoth(c*x)/(6*c**6) + 49*b*e*acoth(c*x)/(60*c**6), Ne(c, 0)), (d*x*
*6*(a + I*pi*b/2)/6, True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \operatorname{arcoth}\left (c x\right ) + a\right )}{\left (e \log \left (-c^{2} x^{2} + 1\right ) + d\right )} x^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="giac")

[Out]

integrate((b*arccoth(c*x) + a)*(e*log(-c^2*x^2 + 1) + d)*x^5, x)