3.133 \(\int \frac{\coth ^{-1}(\tanh (a+b x))}{x^2} \, dx\)

Optimal. Leaf size=17 \[ b \log (x)-\frac{\coth ^{-1}(\tanh (a+b x))}{x} \]

[Out]

-(ArcCoth[Tanh[a + b*x]]/x) + b*Log[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0092769, antiderivative size = 17, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {2168, 29} \[ b \log (x)-\frac{\coth ^{-1}(\tanh (a+b x))}{x} \]

Antiderivative was successfully verified.

[In]

Int[ArcCoth[Tanh[a + b*x]]/x^2,x]

[Out]

-(ArcCoth[Tanh[a + b*x]]/x) + b*Log[x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rubi steps

\begin{align*} \int \frac{\coth ^{-1}(\tanh (a+b x))}{x^2} \, dx &=-\frac{\coth ^{-1}(\tanh (a+b x))}{x}+b \int \frac{1}{x} \, dx\\ &=-\frac{\coth ^{-1}(\tanh (a+b x))}{x}+b \log (x)\\ \end{align*}

Mathematica [A]  time = 0.016392, size = 18, normalized size = 1.06 \[ -\frac{\coth ^{-1}(\tanh (a+b x))}{x}+b \log (x)+b \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[Tanh[a + b*x]]/x^2,x]

[Out]

b - ArcCoth[Tanh[a + b*x]]/x + b*Log[x]

________________________________________________________________________________________

Maple [A]  time = 0.069, size = 20, normalized size = 1.2 \begin{align*} -{\frac{{\rm arccoth} \left (\tanh \left ( bx+a \right ) \right )}{x}}+b\ln \left ( bx \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(tanh(b*x+a))/x^2,x)

[Out]

-arccoth(tanh(b*x+a))/x+b*ln(b*x)

________________________________________________________________________________________

Maxima [A]  time = 1.17533, size = 23, normalized size = 1.35 \begin{align*} b \log \left (x\right ) - \frac{\operatorname{arcoth}\left (\tanh \left (b x + a\right )\right )}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(tanh(b*x+a))/x^2,x, algorithm="maxima")

[Out]

b*log(x) - arccoth(tanh(b*x + a))/x

________________________________________________________________________________________

Fricas [A]  time = 1.72301, size = 27, normalized size = 1.59 \begin{align*} \frac{b x \log \left (x\right ) - a}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(tanh(b*x+a))/x^2,x, algorithm="fricas")

[Out]

(b*x*log(x) - a)/x

________________________________________________________________________________________

Sympy [A]  time = 0.314397, size = 14, normalized size = 0.82 \begin{align*} b \log{\left (x \right )} - \frac{\operatorname{acoth}{\left (\tanh{\left (a + b x \right )} \right )}}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(tanh(b*x+a))/x**2,x)

[Out]

b*log(x) - acoth(tanh(a + b*x))/x

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{arcoth}\left (\tanh \left (b x + a\right )\right )}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(tanh(b*x+a))/x^2,x, algorithm="giac")

[Out]

integrate(arccoth(tanh(b*x + a))/x^2, x)