3.130 \(\int x \coth ^{-1}(\tanh (a+b x)) \, dx\)

Optimal. Leaf size=23 \[ \frac{1}{2} x^2 \coth ^{-1}(\tanh (a+b x))-\frac{b x^3}{6} \]

[Out]

-(b*x^3)/6 + (x^2*ArcCoth[Tanh[a + b*x]])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0074933, antiderivative size = 23, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {6240, 30} \[ \frac{1}{2} x^2 \coth ^{-1}(\tanh (a+b x))-\frac{b x^3}{6} \]

Antiderivative was successfully verified.

[In]

Int[x*ArcCoth[Tanh[a + b*x]],x]

[Out]

-(b*x^3)/6 + (x^2*ArcCoth[Tanh[a + b*x]])/2

Rule 6240

Int[ArcCoth[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^(
m + 1)*ArcCoth[c + d*Tanh[a + b*x]])/(f*(m + 1)), x] + Dist[b/(f*(m + 1)), Int[(e + f*x)^(m + 1)/(c - d + c*E^
(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int x \coth ^{-1}(\tanh (a+b x)) \, dx &=\frac{1}{2} x^2 \coth ^{-1}(\tanh (a+b x))-\frac{1}{2} b \int x^2 \, dx\\ &=-\frac{b x^3}{6}+\frac{1}{2} x^2 \coth ^{-1}(\tanh (a+b x))\\ \end{align*}

Mathematica [A]  time = 0.0157631, size = 20, normalized size = 0.87 \[ -\frac{1}{6} x^2 \left (b x-3 \coth ^{-1}(\tanh (a+b x))\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x*ArcCoth[Tanh[a + b*x]],x]

[Out]

-(x^2*(b*x - 3*ArcCoth[Tanh[a + b*x]]))/6

________________________________________________________________________________________

Maple [B]  time = 0.075, size = 48, normalized size = 2.1 \begin{align*}{\frac{{x}^{2}{\rm arccoth} \left (\tanh \left ( bx+a \right ) \right )}{2}}+{\frac{1}{2\,{b}^{2}} \left ( -{\frac{ \left ( bx+a \right ) ^{3}}{3}}+ \left ( bx+a \right ) ^{2}a-{a}^{2} \left ( bx+a \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arccoth(tanh(b*x+a)),x)

[Out]

1/2*x^2*arccoth(tanh(b*x+a))+1/2/b^2*(-1/3*(b*x+a)^3+(b*x+a)^2*a-a^2*(b*x+a))

________________________________________________________________________________________

Maxima [A]  time = 1.17243, size = 26, normalized size = 1.13 \begin{align*} -\frac{1}{6} \, b x^{3} + \frac{1}{2} \, x^{2} \operatorname{arcoth}\left (\tanh \left (b x + a\right )\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccoth(tanh(b*x+a)),x, algorithm="maxima")

[Out]

-1/6*b*x^3 + 1/2*x^2*arccoth(tanh(b*x + a))

________________________________________________________________________________________

Fricas [A]  time = 1.65176, size = 31, normalized size = 1.35 \begin{align*} \frac{1}{3} \, b x^{3} + \frac{1}{2} \, a x^{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccoth(tanh(b*x+a)),x, algorithm="fricas")

[Out]

1/3*b*x^3 + 1/2*a*x^2

________________________________________________________________________________________

Sympy [A]  time = 0.291645, size = 19, normalized size = 0.83 \begin{align*} - \frac{b x^{3}}{6} + \frac{x^{2} \operatorname{acoth}{\left (\tanh{\left (a + b x \right )} \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*acoth(tanh(b*x+a)),x)

[Out]

-b*x**3/6 + x**2*acoth(tanh(a + b*x))/2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \operatorname{arcoth}\left (\tanh \left (b x + a\right )\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccoth(tanh(b*x+a)),x, algorithm="giac")

[Out]

integrate(x*arccoth(tanh(b*x + a)), x)