3.87 \(\int \frac{x^2}{\tanh ^{-1}(\tanh (a+b x))} \, dx\)

Optimal. Leaf size=56 \[ \frac{x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{b^2}+\frac{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{b^3}+\frac{x^2}{2 b} \]

[Out]

x^2/(2*b) + (x*(b*x - ArcTanh[Tanh[a + b*x]]))/b^2 + ((b*x - ArcTanh[Tanh[a + b*x]])^2*Log[ArcTanh[Tanh[a + b*
x]]])/b^3

________________________________________________________________________________________

Rubi [A]  time = 0.0346303, antiderivative size = 56, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {2159, 2158, 2157, 29} \[ \frac{x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{b^2}+\frac{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{b^3}+\frac{x^2}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[x^2/ArcTanh[Tanh[a + b*x]],x]

[Out]

x^2/(2*b) + (x*(b*x - ArcTanh[Tanh[a + b*x]]))/b^2 + ((b*x - ArcTanh[Tanh[a + b*x]])^2*Log[ArcTanh[Tanh[a + b*
x]]])/b^3

Rule 2159

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^n/(a*n), x] - Dis
t[(b*u - a*v)/a, Int[v^(n - 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && GtQ[n, 0] && Ne
Q[n, 1]

Rule 2158

Int[(v_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(b*x)/a, x] - Dist[(b*u
- a*v)/a, Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rubi steps

\begin{align*} \int \frac{x^2}{\tanh ^{-1}(\tanh (a+b x))} \, dx &=\frac{x^2}{2 b}-\frac{\left (-b x+\tanh ^{-1}(\tanh (a+b x))\right ) \int \frac{x}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{b}\\ &=\frac{x^2}{2 b}+\frac{x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{b^2}+\frac{\left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2 \int \frac{1}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{b^2}\\ &=\frac{x^2}{2 b}+\frac{x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{b^2}+\frac{\left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2 \operatorname{Subst}\left (\int \frac{1}{x} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{b^3}\\ &=\frac{x^2}{2 b}+\frac{x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{b^2}+\frac{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{b^3}\\ \end{align*}

Mathematica [A]  time = 0.0322665, size = 55, normalized size = 0.98 \[ -\frac{x \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )}{b^2}+\frac{\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{b^3}+\frac{x^2}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/ArcTanh[Tanh[a + b*x]],x]

[Out]

x^2/(2*b) - (x*(-(b*x) + ArcTanh[Tanh[a + b*x]]))/b^2 + ((-(b*x) + ArcTanh[Tanh[a + b*x]])^2*Log[ArcTanh[Tanh[
a + b*x]]])/b^3

________________________________________________________________________________________

Maple [B]  time = 0.033, size = 111, normalized size = 2. \begin{align*}{\frac{{x}^{2}}{2\,b}}-{\frac{ax}{{b}^{2}}}-{\frac{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx-a \right ) x}{{b}^{2}}}+{\frac{\ln \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ){a}^{2}}{{b}^{3}}}+2\,{\frac{\ln \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) a \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx-a \right ) }{{b}^{3}}}+{\frac{\ln \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx-a \right ) ^{2}}{{b}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/arctanh(tanh(b*x+a)),x)

[Out]

1/2*x^2/b-1/b^2*a*x-1/b^2*(arctanh(tanh(b*x+a))-b*x-a)*x+1/b^3*ln(arctanh(tanh(b*x+a)))*a^2+2/b^3*ln(arctanh(t
anh(b*x+a)))*a*(arctanh(tanh(b*x+a))-b*x-a)+1/b^3*ln(arctanh(tanh(b*x+a)))*(arctanh(tanh(b*x+a))-b*x-a)^2

________________________________________________________________________________________

Maxima [A]  time = 1.76817, size = 39, normalized size = 0.7 \begin{align*} \frac{a^{2} \log \left (b x + a\right )}{b^{3}} + \frac{b x^{2} - 2 \, a x}{2 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arctanh(tanh(b*x+a)),x, algorithm="maxima")

[Out]

a^2*log(b*x + a)/b^3 + 1/2*(b*x^2 - 2*a*x)/b^2

________________________________________________________________________________________

Fricas [A]  time = 1.50836, size = 68, normalized size = 1.21 \begin{align*} \frac{b^{2} x^{2} - 2 \, a b x + 2 \, a^{2} \log \left (b x + a\right )}{2 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arctanh(tanh(b*x+a)),x, algorithm="fricas")

[Out]

1/2*(b^2*x^2 - 2*a*b*x + 2*a^2*log(b*x + a))/b^3

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\operatorname{atanh}{\left (\tanh{\left (a + b x \right )} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/atanh(tanh(b*x+a)),x)

[Out]

Integral(x**2/atanh(tanh(a + b*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.13289, size = 41, normalized size = 0.73 \begin{align*} \frac{a^{2} \log \left ({\left | b x + a \right |}\right )}{b^{3}} + \frac{b x^{2} - 2 \, a x}{2 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arctanh(tanh(b*x+a)),x, algorithm="giac")

[Out]

a^2*log(abs(b*x + a))/b^3 + 1/2*(b*x^2 - 2*a*x)/b^2