3.4 \(\int \frac{\tanh ^{-1}(\frac{\sqrt{e} x}{\sqrt{d+e x^2}})}{x} \, dx\)

Optimal. Leaf size=238 \[ \frac{\sqrt{d} \sqrt{\frac{e x^2}{d}+1} \text{PolyLog}\left (2,e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 \sqrt{d+e x^2}}-\frac{\sqrt{d} \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{2 \sqrt{d+e x^2}}+\frac{\sqrt{d} \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{\sqrt{d+e x^2}}-\frac{\sqrt{d} \log (x) \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d+e x^2}}+\log (x) \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \]

[Out]

-(Sqrt[d]*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]^2)/(2*Sqrt[d + e*x^2]) + (Sqrt[d]*Sqrt[1 + (e*x^2)/
d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/Sqrt[d + e*x^2] - (Sqrt[d]*Sqrt[1
 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[x])/Sqrt[d + e*x^2] + ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]*Log[
x] + (Sqrt[d]*Sqrt[1 + (e*x^2)/d]*PolyLog[2, E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(2*Sqrt[d + e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.157596, antiderivative size = 238, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {6219, 2327, 2325, 5659, 3716, 2190, 2279, 2391} \[ \frac{\sqrt{d} \sqrt{\frac{e x^2}{d}+1} \text{PolyLog}\left (2,e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 \sqrt{d+e x^2}}-\frac{\sqrt{d} \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{2 \sqrt{d+e x^2}}+\frac{\sqrt{d} \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{\sqrt{d+e x^2}}-\frac{\sqrt{d} \log (x) \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d+e x^2}}+\log (x) \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x,x]

[Out]

-(Sqrt[d]*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]^2)/(2*Sqrt[d + e*x^2]) + (Sqrt[d]*Sqrt[1 + (e*x^2)/
d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/Sqrt[d + e*x^2] - (Sqrt[d]*Sqrt[1
 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[x])/Sqrt[d + e*x^2] + ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]*Log[
x] + (Sqrt[d]*Sqrt[1 + (e*x^2)/d]*PolyLog[2, E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(2*Sqrt[d + e*x^2])

Rule 6219

Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]/(x_), x_Symbol] :> Simp[ArcTanh[(c*x)/Sqrt[a + b*x^2]]*Lo
g[x], x] - Dist[c, Int[Log[x]/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]

Rule 2327

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (e*x^2)/d]/Sqr
t[d + e*x^2], Int[(a + b*Log[c*x^n])/Sqrt[1 + (e*x^2)/d], x], x] /; FreeQ[{a, b, c, d, e, n}, x] &&  !GtQ[d, 0
]

Rule 2325

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(ArcSinh[(Rt[e, 2]*x)/S
qrt[d]]*(a + b*Log[c*x^n]))/Rt[e, 2], x] - Dist[(b*n)/Rt[e, 2], Int[ArcSinh[(Rt[e, 2]*x)/Sqrt[d]]/x, x], x] /;
 FreeQ[{a, b, c, d, e, n}, x] && GtQ[d, 0] && PosQ[e]

Rule 5659

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tanh[x], x], x, ArcSinh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 3716

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c
+ d*x)^(m + 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(E^(2*I*k*Pi)*(1 + E^(2*
(-(I*e) + f*fz*x))/E^(2*I*k*Pi))), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{x} \, dx &=\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)-\sqrt{e} \int \frac{\log (x)}{\sqrt{d+e x^2}} \, dx\\ &=\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)-\frac{\left (\sqrt{e} \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{\log (x)}{\sqrt{1+\frac{e x^2}{d}}} \, dx}{\sqrt{d+e x^2}}\\ &=-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log (x)}{\sqrt{d+e x^2}}+\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)+\frac{\left (\sqrt{d} \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{x} \, dx}{\sqrt{d+e x^2}}\\ &=-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log (x)}{\sqrt{d+e x^2}}+\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)+\frac{\left (\sqrt{d} \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int x \coth (x) \, dx,x,\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )}{\sqrt{d+e x^2}}\\ &=-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{2 \sqrt{d+e x^2}}-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log (x)}{\sqrt{d+e x^2}}+\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)-\frac{\left (2 \sqrt{d} \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int \frac{e^{2 x} x}{1-e^{2 x}} \, dx,x,\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )}{\sqrt{d+e x^2}}\\ &=-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{2 \sqrt{d+e x^2}}+\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{\sqrt{d+e x^2}}-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log (x)}{\sqrt{d+e x^2}}+\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)-\frac{\left (\sqrt{d} \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )}{\sqrt{d+e x^2}}\\ &=-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{2 \sqrt{d+e x^2}}+\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{\sqrt{d+e x^2}}-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log (x)}{\sqrt{d+e x^2}}+\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)-\frac{\left (\sqrt{d} \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 \sqrt{d+e x^2}}\\ &=-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{2 \sqrt{d+e x^2}}+\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{\sqrt{d+e x^2}}-\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log (x)}{\sqrt{d+e x^2}}+\tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \log (x)+\frac{\sqrt{d} \sqrt{1+\frac{e x^2}{d}} \text{Li}_2\left (e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 \sqrt{d+e x^2}}\\ \end{align*}

Mathematica [A]  time = 2.16352, size = 167, normalized size = 0.7 \[ \frac{\sqrt{e} \sqrt{\frac{e x^2}{d}+1} \left (-\text{PolyLog}\left (2,e^{-2 \sinh ^{-1}\left (x \sqrt{\frac{e}{d}}\right )}\right )-2 \log (x) \log \left (\sqrt{\frac{e x^2}{d}+1}+x \sqrt{\frac{e}{d}}\right )+\sinh ^{-1}\left (x \sqrt{\frac{e}{d}}\right )^2+2 \sinh ^{-1}\left (x \sqrt{\frac{e}{d}}\right ) \log \left (1-e^{-2 \sinh ^{-1}\left (x \sqrt{\frac{e}{d}}\right )}\right )\right )}{2 \sqrt{\frac{e}{d}} \sqrt{d+e x^2}}+\log (x) \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x,x]

[Out]

ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]*Log[x] + (Sqrt[e]*Sqrt[1 + (e*x^2)/d]*(ArcSinh[Sqrt[e/d]*x]^2 + 2*ArcSinh
[Sqrt[e/d]*x]*Log[1 - E^(-2*ArcSinh[Sqrt[e/d]*x])] - 2*Log[x]*Log[Sqrt[e/d]*x + Sqrt[1 + (e*x^2)/d]] - PolyLog
[2, E^(-2*ArcSinh[Sqrt[e/d]*x])]))/(2*Sqrt[e/d]*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.325, size = 209, normalized size = 0.9 \begin{align*} -{\frac{1}{2} \left ({\it Artanh} \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}} \right ) \right ) ^{2}}+{\it Artanh} \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}} \right ) \ln \left ( 1+{ \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}}+1 \right ){\frac{1}{\sqrt{-{\frac{e{x}^{2}}{e{x}^{2}+d}}+1}}}} \right ) +{\it polylog} \left ( 2,-{ \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}}+1 \right ){\frac{1}{\sqrt{-{\frac{e{x}^{2}}{e{x}^{2}+d}}+1}}}} \right ) +{\it Artanh} \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}} \right ) \ln \left ( 1-{ \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}}+1 \right ){\frac{1}{\sqrt{-{\frac{e{x}^{2}}{e{x}^{2}+d}}+1}}}} \right ) +{\it polylog} \left ( 2,{ \left ({x\sqrt{e}{\frac{1}{\sqrt{e{x}^{2}+d}}}}+1 \right ){\frac{1}{\sqrt{-{\frac{e{x}^{2}}{e{x}^{2}+d}}+1}}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x,x)

[Out]

-1/2*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))^2+arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))*ln(1+(x*e^(1/2)/(e*x^2+d)^(1/2)+1
)/(-x^2*e/(e*x^2+d)+1)^(1/2))+polylog(2,-(x*e^(1/2)/(e*x^2+d)^(1/2)+1)/(-x^2*e/(e*x^2+d)+1)^(1/2))+arctanh(x*e
^(1/2)/(e*x^2+d)^(1/2))*ln(1-(x*e^(1/2)/(e*x^2+d)^(1/2)+1)/(-x^2*e/(e*x^2+d)+1)^(1/2))+polylog(2,(x*e^(1/2)/(e
*x^2+d)^(1/2)+1)/(-x^2*e/(e*x^2+d)+1)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{artanh}\left (\frac{\sqrt{e} x}{\sqrt{e x^{2} + d}}\right )}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x,x, algorithm="maxima")

[Out]

integrate(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\operatorname{artanh}\left (\frac{\sqrt{e} x}{\sqrt{e x^{2} + d}}\right )}{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x,x, algorithm="fricas")

[Out]

integral(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{atanh}{\left (\frac{\sqrt{e} x}{\sqrt{d + e x^{2}}} \right )}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(x*e**(1/2)/(e*x**2+d)**(1/2))/x,x)

[Out]

Integral(atanh(sqrt(e)*x/sqrt(d + e*x**2))/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{artanh}\left (\frac{\sqrt{e} x}{\sqrt{e x^{2} + d}}\right )}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x,x, algorithm="giac")

[Out]

integrate(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x, x)