3.226 \(\int \frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^{3/2}} \, dx\)

Optimal. Leaf size=81 \[ -\frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt{x}}+3 b \sqrt{x} \sqrt{\tanh ^{-1}(\tanh (a+b x))}-3 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \]

[Out]

-3*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]]) + 3*b*Sqrt[x
]*Sqrt[ArcTanh[Tanh[a + b*x]]] - (2*ArcTanh[Tanh[a + b*x]]^(3/2))/Sqrt[x]

________________________________________________________________________________________

Rubi [A]  time = 0.056096, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {2168, 2169, 2165} \[ -\frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt{x}}+3 b \sqrt{x} \sqrt{\tanh ^{-1}(\tanh (a+b x))}-3 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^(3/2)/x^(3/2),x]

[Out]

-3*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]]) + 3*b*Sqrt[x
]*Sqrt[ArcTanh[Tanh[a + b*x]]] - (2*ArcTanh[Tanh[a + b*x]]^(3/2))/Sqrt[x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rule 2169

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + n + 1)), x] - Dist[(n*(b*u - a*v))/(a*(m + n + 1)), Int[u^m*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]]
 /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !In
tegerQ[n] || LtQ[0, m, n])) &&  !ILtQ[m + n, -2]

Rule 2165

Int[1/(Sqrt[u_]*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTanh[(
Rt[a*b, 2]*Sqrt[u])/(a*Sqrt[v])])/Rt[a*b, 2], x] /; NeQ[b*u - a*v, 0] && PosQ[a*b]] /; PiecewiseLinearQ[u, v,
x]

Rubi steps

\begin{align*} \int \frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^{3/2}} \, dx &=-\frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt{x}}+(3 b) \int \frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{x}} \, dx\\ &=3 b \sqrt{x} \sqrt{\tanh ^{-1}(\tanh (a+b x))}-\frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt{x}}-\frac{1}{2} \left (3 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )\right ) \int \frac{1}{\sqrt{x} \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=-3 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+3 b \sqrt{x} \sqrt{\tanh ^{-1}(\tanh (a+b x))}-\frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt{x}}\\ \end{align*}

Mathematica [A]  time = 0.051877, size = 77, normalized size = 0.95 \[ \frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))} \left (3 b x-2 \tanh ^{-1}(\tanh (a+b x))\right )}{\sqrt{x}}+3 \sqrt{b} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right ) \log \left (\sqrt{b} \sqrt{\tanh ^{-1}(\tanh (a+b x))}+b \sqrt{x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^(3/2)/x^(3/2),x]

[Out]

((3*b*x - 2*ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]])/Sqrt[x] + 3*Sqrt[b]*(-(b*x) + ArcTanh[Tanh[a
 + b*x]])*Log[b*Sqrt[x] + Sqrt[b]*Sqrt[ArcTanh[Tanh[a + b*x]]]]

________________________________________________________________________________________

Maple [B]  time = 0.117, size = 280, normalized size = 3.5 \begin{align*} -2\,{\frac{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) ^{5/2}}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) \sqrt{x}}}+2\,{\frac{b\sqrt{x} \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) ^{3/2}}{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}+3\,{\frac{ab\sqrt{x}\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}+3\,{\frac{\sqrt{b}\ln \left ( \sqrt{b}\sqrt{x}+\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) } \right ){a}^{2}}{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}+6\,{\frac{\sqrt{b}a\ln \left ( \sqrt{b}\sqrt{x}+\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) } \right ) \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx-a \right ) }{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}+3\,{\frac{b \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx-a \right ) \sqrt{x}\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}+3\,{\frac{\sqrt{b}\ln \left ( \sqrt{b}\sqrt{x}+\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) } \right ) \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx-a \right ) ^{2}}{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(3/2)/x^(3/2),x)

[Out]

-2/(arctanh(tanh(b*x+a))-b*x)/x^(1/2)*arctanh(tanh(b*x+a))^(5/2)+2*b/(arctanh(tanh(b*x+a))-b*x)*x^(1/2)*arctan
h(tanh(b*x+a))^(3/2)+3*b/(arctanh(tanh(b*x+a))-b*x)*a*x^(1/2)*arctanh(tanh(b*x+a))^(1/2)+3*b^(1/2)/(arctanh(ta
nh(b*x+a))-b*x)*ln(b^(1/2)*x^(1/2)+arctanh(tanh(b*x+a))^(1/2))*a^2+6*b^(1/2)/(arctanh(tanh(b*x+a))-b*x)*a*ln(b
^(1/2)*x^(1/2)+arctanh(tanh(b*x+a))^(1/2))*(arctanh(tanh(b*x+a))-b*x-a)+3*b/(arctanh(tanh(b*x+a))-b*x)*(arctan
h(tanh(b*x+a))-b*x-a)*x^(1/2)*arctanh(tanh(b*x+a))^(1/2)+3*b^(1/2)/(arctanh(tanh(b*x+a))-b*x)*ln(b^(1/2)*x^(1/
2)+arctanh(tanh(b*x+a))^(1/2))*(arctanh(tanh(b*x+a))-b*x-a)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{artanh}\left (\tanh \left (b x + a\right )\right )^{\frac{3}{2}}}{x^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^(3/2),x, algorithm="maxima")

[Out]

integrate(arctanh(tanh(b*x + a))^(3/2)/x^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.44476, size = 289, normalized size = 3.57 \begin{align*} \left [\frac{3 \, a \sqrt{b} x \log \left (2 \, b x + 2 \, \sqrt{b x + a} \sqrt{b} \sqrt{x} + a\right ) + 2 \, \sqrt{b x + a}{\left (b x - 2 \, a\right )} \sqrt{x}}{2 \, x}, -\frac{3 \, a \sqrt{-b} x \arctan \left (\frac{\sqrt{b x + a} \sqrt{-b}}{b \sqrt{x}}\right ) - \sqrt{b x + a}{\left (b x - 2 \, a\right )} \sqrt{x}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^(3/2),x, algorithm="fricas")

[Out]

[1/2*(3*a*sqrt(b)*x*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) + 2*sqrt(b*x + a)*(b*x - 2*a)*sqrt(x))/x,
 -(3*a*sqrt(-b)*x*arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) - sqrt(b*x + a)*(b*x - 2*a)*sqrt(x))/x]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{atanh}^{\frac{3}{2}}{\left (\tanh{\left (a + b x \right )} \right )}}{x^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(3/2)/x**(3/2),x)

[Out]

Integral(atanh(tanh(a + b*x))**(3/2)/x**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^(3/2),x, algorithm="giac")

[Out]

Timed out