3.197 \(\int \frac{1}{x^{5/2} \tanh ^{-1}(\tanh (a+b x))} \, dx\)

Optimal. Leaf size=101 \[ -\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}+\frac{2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}+\frac{2 b}{\sqrt{x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2} \]

[Out]

(-2*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(5/2
) + (2*b)/(Sqrt[x]*(b*x - ArcTanh[Tanh[a + b*x]])^2) + 2/(3*x^(3/2)*(b*x - ArcTanh[Tanh[a + b*x]]))

________________________________________________________________________________________

Rubi [A]  time = 0.0572352, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {2163, 2162} \[ -\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}+\frac{2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}+\frac{2 b}{\sqrt{x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(5/2)*ArcTanh[Tanh[a + b*x]]),x]

[Out]

(-2*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(5/2
) + (2*b)/(Sqrt[x]*(b*x - ArcTanh[Tanh[a + b*x]])^2) + 2/(3*x^(3/2)*(b*x - ArcTanh[Tanh[a + b*x]]))

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2162

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-2*ArcTanh[Sqrt
[v]/Rt[-((b*u - a*v)/a), 2]])/(a*Rt[-((b*u - a*v)/a), 2]), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /;
PiecewiseLinearQ[u, v, x]

Rubi steps

\begin{align*} \int \frac{1}{x^{5/2} \tanh ^{-1}(\tanh (a+b x))} \, dx &=\frac{2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac{b \int \frac{1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))} \, dx}{-b x+\tanh ^{-1}(\tanh (a+b x))}\\ &=\frac{2 b}{\sqrt{x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}+\frac{2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac{b^2 \int \frac{1}{\sqrt{x} \tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}+\frac{2 b}{\sqrt{x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}+\frac{2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ \end{align*}

Mathematica [A]  time = 0.172382, size = 89, normalized size = 0.88 \[ \frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{5/2}}+\frac{2 \left (4 b x-\tanh ^{-1}(\tanh (a+b x))\right )}{3 x^{3/2} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(5/2)*ArcTanh[Tanh[a + b*x]]),x]

[Out]

(2*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(-(b*x) + ArcTanh[Tanh[a + b*x]])^
(5/2) + (2*(4*b*x - ArcTanh[Tanh[a + b*x]]))/(3*x^(3/2)*(-(b*x) + ArcTanh[Tanh[a + b*x]])^2)

________________________________________________________________________________________

Maple [A]  time = 0.137, size = 98, normalized size = 1. \begin{align*} 2\,{\frac{{b}^{2}}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{2}\sqrt{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) b}}\arctan \left ({\frac{b\sqrt{x}}{\sqrt{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) b}}} \right ) }-{\frac{2}{3\,{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -3\,bx}{x}^{-{\frac{3}{2}}}}+2\,{\frac{b}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{2}\sqrt{x}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/arctanh(tanh(b*x+a)),x)

[Out]

2*b^2/(arctanh(tanh(b*x+a))-b*x)^2/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a)
)-b*x)*b)^(1/2))-2/3/(arctanh(tanh(b*x+a))-b*x)/x^(3/2)+2/(arctanh(tanh(b*x+a))-b*x)^2*b/x^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/arctanh(tanh(b*x+a)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.01692, size = 275, normalized size = 2.72 \begin{align*} \left [\frac{3 \, b x^{2} \sqrt{-\frac{b}{a}} \log \left (\frac{b x + 2 \, a \sqrt{x} \sqrt{-\frac{b}{a}} - a}{b x + a}\right ) + 2 \,{\left (3 \, b x - a\right )} \sqrt{x}}{3 \, a^{2} x^{2}}, -\frac{2 \,{\left (3 \, b x^{2} \sqrt{\frac{b}{a}} \arctan \left (\frac{a \sqrt{\frac{b}{a}}}{b \sqrt{x}}\right ) -{\left (3 \, b x - a\right )} \sqrt{x}\right )}}{3 \, a^{2} x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/arctanh(tanh(b*x+a)),x, algorithm="fricas")

[Out]

[1/3*(3*b*x^2*sqrt(-b/a)*log((b*x + 2*a*sqrt(x)*sqrt(-b/a) - a)/(b*x + a)) + 2*(3*b*x - a)*sqrt(x))/(a^2*x^2),
 -2/3*(3*b*x^2*sqrt(b/a)*arctan(a*sqrt(b/a)/(b*sqrt(x))) - (3*b*x - a)*sqrt(x))/(a^2*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{\frac{5}{2}} \operatorname{atanh}{\left (\tanh{\left (a + b x \right )} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/atanh(tanh(b*x+a)),x)

[Out]

Integral(1/(x**(5/2)*atanh(tanh(a + b*x))), x)

________________________________________________________________________________________

Giac [A]  time = 1.14017, size = 55, normalized size = 0.54 \begin{align*} \frac{2 \, b^{2} \arctan \left (\frac{b \sqrt{x}}{\sqrt{a b}}\right )}{\sqrt{a b} a^{2}} + \frac{2 \,{\left (3 \, b x - a\right )}}{3 \, a^{2} x^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/arctanh(tanh(b*x+a)),x, algorithm="giac")

[Out]

2*b^2*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a^2) + 2/3*(3*b*x - a)/(a^2*x^(3/2))