3.155 \(\int \frac{1}{x^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx\)

Optimal. Leaf size=124 \[ -\frac{3 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{3 b \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}} \]

[Out]

(-3*b*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^
(5/2) - 1/(x*ArcTanh[Tanh[a + b*x]]^(3/2)) + b/((b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^(3/2)) -
 (3*b)/((b*x - ArcTanh[Tanh[a + b*x]])^2*Sqrt[ArcTanh[Tanh[a + b*x]]])

________________________________________________________________________________________

Rubi [A]  time = 0.074482, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2168, 2163, 2161} \[ -\frac{3 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{3 b \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*ArcTanh[Tanh[a + b*x]]^(3/2)),x]

[Out]

(-3*b*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^
(5/2) - 1/(x*ArcTanh[Tanh[a + b*x]]^(3/2)) + b/((b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^(3/2)) -
 (3*b)/((b*x - ArcTanh[Tanh[a + b*x]])^2*Sqrt[ArcTanh[Tanh[a + b*x]]])

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx &=-\frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{2} (3 b) \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx\\ &=-\frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac{b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac{(3 b) \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac{b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{3 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{(3 b) \int \frac{1}{x \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac{3 b \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}-\frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac{b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{3 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}\\ \end{align*}

Mathematica [A]  time = 0.0832766, size = 91, normalized size = 0.73 \[ \frac{3 b \tanh ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{5/2}}-\frac{\tanh ^{-1}(\tanh (a+b x))+2 b x}{x \sqrt{\tanh ^{-1}(\tanh (a+b x))} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*ArcTanh[Tanh[a + b*x]]^(3/2)),x]

[Out]

(3*b*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(-(b*x) + ArcTanh[Tanh[a + b
*x]])^(5/2) - (2*b*x + ArcTanh[Tanh[a + b*x]])/(x*Sqrt[ArcTanh[Tanh[a + b*x]]]*(-(b*x) + ArcTanh[Tanh[a + b*x]
])^2)

________________________________________________________________________________________

Maple [A]  time = 0.104, size = 105, normalized size = 0.9 \begin{align*} 2\,b \left ( -{\frac{1}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{2}} \left ( 1/2\,{\frac{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{bx}}-3/2\,{\frac{1}{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}{\it Artanh} \left ({\frac{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}} \right ) } \right ) }-{\frac{1}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{2}\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/arctanh(tanh(b*x+a))^(3/2),x)

[Out]

2*b*(-1/(arctanh(tanh(b*x+a))-b*x)^2*(1/2*arctanh(tanh(b*x+a))^(1/2)/b/x-3/2/(arctanh(tanh(b*x+a))-b*x)^(1/2)*
arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2)))-1/(arctanh(tanh(b*x+a))-b*x)^2/arctanh(t
anh(b*x+a))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \operatorname{artanh}\left (\tanh \left (b x + a\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arctanh(tanh(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(x^2*arctanh(tanh(b*x + a))^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.11259, size = 346, normalized size = 2.79 \begin{align*} \left [\frac{3 \,{\left (b^{2} x^{2} + a b x\right )} \sqrt{a} \log \left (\frac{b x + 2 \, \sqrt{b x + a} \sqrt{a} + 2 \, a}{x}\right ) - 2 \,{\left (3 \, a b x + a^{2}\right )} \sqrt{b x + a}}{2 \,{\left (a^{3} b x^{2} + a^{4} x\right )}}, -\frac{3 \,{\left (b^{2} x^{2} + a b x\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{b x + a} \sqrt{-a}}{a}\right ) +{\left (3 \, a b x + a^{2}\right )} \sqrt{b x + a}}{a^{3} b x^{2} + a^{4} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arctanh(tanh(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

[1/2*(3*(b^2*x^2 + a*b*x)*sqrt(a)*log((b*x + 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*(3*a*b*x + a^2)*sqrt(b*x +
a))/(a^3*b*x^2 + a^4*x), -(3*(b^2*x^2 + a*b*x)*sqrt(-a)*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (3*a*b*x + a^2)*sqr
t(b*x + a))/(a^3*b*x^2 + a^4*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \operatorname{atanh}^{\frac{3}{2}}{\left (\tanh{\left (a + b x \right )} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/atanh(tanh(b*x+a))**(3/2),x)

[Out]

Integral(1/(x**2*atanh(tanh(a + b*x))**(3/2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.16568, size = 86, normalized size = 0.69 \begin{align*} -\frac{3 \, b \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a^{2}} - \frac{3 \,{\left (b x + a\right )} b - 2 \, a b}{{\left ({\left (b x + a\right )}^{\frac{3}{2}} - \sqrt{b x + a} a\right )} a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arctanh(tanh(b*x+a))^(3/2),x, algorithm="giac")

[Out]

-3*b*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a^2) - (3*(b*x + a)*b - 2*a*b)/(((b*x + a)^(3/2) - sqrt(b*x + a)
*a)*a^2)