3.147 \(\int \frac{1}{x^3 \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx\)

Optimal. Leaf size=158 \[ \frac{3 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac{3 b^2 \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b}{4 x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \]

[Out]

(3*b^2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(4*(b*x - ArcTanh[Tanh[a + b*x
]])^(5/2)) + b/(4*x*ArcTanh[Tanh[a + b*x]]^(3/2)) - b^2/(4*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x
]]^(3/2)) - 1/(2*x^2*Sqrt[ArcTanh[Tanh[a + b*x]]]) + (3*b^2)/(4*(b*x - ArcTanh[Tanh[a + b*x]])^2*Sqrt[ArcTanh[
Tanh[a + b*x]]])

________________________________________________________________________________________

Rubi [A]  time = 0.0962233, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2168, 2163, 2161} \[ \frac{3 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac{3 b^2 \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b}{4 x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Sqrt[ArcTanh[Tanh[a + b*x]]]),x]

[Out]

(3*b^2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(4*(b*x - ArcTanh[Tanh[a + b*x
]])^(5/2)) + b/(4*x*ArcTanh[Tanh[a + b*x]]^(3/2)) - b^2/(4*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x
]]^(3/2)) - 1/(2*x^2*Sqrt[ArcTanh[Tanh[a + b*x]]]) + (3*b^2)/(4*(b*x - ArcTanh[Tanh[a + b*x]])^2*Sqrt[ArcTanh[
Tanh[a + b*x]]])

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx &=-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{1}{4} b \int \frac{1}{x^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx\\ &=\frac{b}{4 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{1}{8} \left (3 b^2\right ) \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx\\ &=\frac{b}{4 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{\left (3 b^2\right ) \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac{b}{4 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{3 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{\left (3 b^2\right ) \int \frac{1}{x \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac{3 b^2 \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}+\frac{b}{4 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac{1}{2 x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{3 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}}\\ \end{align*}

Mathematica [A]  time = 0.0841114, size = 98, normalized size = 0.62 \[ \frac{1}{4} \left (\frac{\left (5 b x-2 \tanh ^{-1}(\tanh (a+b x))\right ) \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{x^2 \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2}-\frac{3 b^2 \tanh ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{5/2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Sqrt[ArcTanh[Tanh[a + b*x]]]),x]

[Out]

((-3*b^2*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(-(b*x) + ArcTanh[Tanh[a
 + b*x]])^(5/2) + ((5*b*x - 2*ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]])/(x^2*(-(b*x) + ArcTanh[Tan
h[a + b*x]])^2))/4

________________________________________________________________________________________

Maple [A]  time = 0.147, size = 148, normalized size = 0.9 \begin{align*} 2\,{b}^{2} \left ({\frac{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{ \left ( -4\,{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) +4\,bx \right ){b}^{2}{x}^{2}}}+3\,{\frac{1}{-4\,{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) +4\,bx} \left ( 2\,{\frac{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{ \left ( -4\,{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) +4\,bx \right ) bx}}-2\,{\frac{1}{ \left ( -4\,{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) +4\,bx \right ) \sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}{\it Artanh} \left ({\frac{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}} \right ) } \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/arctanh(tanh(b*x+a))^(1/2),x)

[Out]

2*b^2*(arctanh(tanh(b*x+a))^(1/2)/(-4*arctanh(tanh(b*x+a))+4*b*x)/b^2/x^2+3/(-4*arctanh(tanh(b*x+a))+4*b*x)*(2
*arctanh(tanh(b*x+a))^(1/2)/(-4*arctanh(tanh(b*x+a))+4*b*x)/b/x-2/(-4*arctanh(tanh(b*x+a))+4*b*x)/(arctanh(tan
h(b*x+a))-b*x)^(1/2)*arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2))))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \sqrt{\operatorname{artanh}\left (\tanh \left (b x + a\right )\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(x^3*sqrt(arctanh(tanh(b*x + a)))), x)

________________________________________________________________________________________

Fricas [A]  time = 2.20169, size = 301, normalized size = 1.91 \begin{align*} \left [\frac{3 \, \sqrt{a} b^{2} x^{2} \log \left (\frac{b x - 2 \, \sqrt{b x + a} \sqrt{a} + 2 \, a}{x}\right ) + 2 \,{\left (3 \, a b x - 2 \, a^{2}\right )} \sqrt{b x + a}}{8 \, a^{3} x^{2}}, \frac{3 \, \sqrt{-a} b^{2} x^{2} \arctan \left (\frac{\sqrt{b x + a} \sqrt{-a}}{a}\right ) +{\left (3 \, a b x - 2 \, a^{2}\right )} \sqrt{b x + a}}{4 \, a^{3} x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(a)*b^2*x^2*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*(3*a*b*x - 2*a^2)*sqrt(b*x + a))/(a^3
*x^2), 1/4*(3*sqrt(-a)*b^2*x^2*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (3*a*b*x - 2*a^2)*sqrt(b*x + a))/(a^3*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \sqrt{\operatorname{atanh}{\left (\tanh{\left (a + b x \right )} \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/atanh(tanh(b*x+a))**(1/2),x)

[Out]

Integral(1/(x**3*sqrt(atanh(tanh(a + b*x)))), x)

________________________________________________________________________________________

Giac [A]  time = 1.16351, size = 93, normalized size = 0.59 \begin{align*} \frac{\frac{3 \, b^{3} \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a^{2}} + \frac{3 \,{\left (b x + a\right )}^{\frac{3}{2}} b^{3} - 5 \, \sqrt{b x + a} a b^{3}}{a^{2} b^{2} x^{2}}}{4 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^(1/2),x, algorithm="giac")

[Out]

1/4*(3*b^3*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a^2) + (3*(b*x + a)^(3/2)*b^3 - 5*sqrt(b*x + a)*a*b^3)/(a^
2*b^2*x^2))/b