3.128 \(\int \frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^4} \, dx\)

Optimal. Leaf size=146 \[ \frac{b^3}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b^2}{8 x \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b^3 \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}}-\frac{b \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{4 x^2}-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3} \]

[Out]

(b^3*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(8*(b*x - ArcTanh[Tanh[a + b*x]]
)^(3/2)) - b^2/(8*x*Sqrt[ArcTanh[Tanh[a + b*x]]]) + b^3/(8*(b*x - ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a
+ b*x]]]) - (b*Sqrt[ArcTanh[Tanh[a + b*x]]])/(4*x^2) - ArcTanh[Tanh[a + b*x]]^(3/2)/(3*x^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0935789, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2168, 2163, 2161} \[ \frac{b^3}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b^2}{8 x \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b^3 \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}}-\frac{b \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{4 x^2}-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^(3/2)/x^4,x]

[Out]

(b^3*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(8*(b*x - ArcTanh[Tanh[a + b*x]]
)^(3/2)) - b^2/(8*x*Sqrt[ArcTanh[Tanh[a + b*x]]]) + b^3/(8*(b*x - ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a
+ b*x]]]) - (b*Sqrt[ArcTanh[Tanh[a + b*x]]])/(4*x^2) - ArcTanh[Tanh[a + b*x]]^(3/2)/(3*x^3)

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rubi steps

\begin{align*} \int \frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^4} \, dx &=-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3}+\frac{1}{2} b \int \frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{x^3} \, dx\\ &=-\frac{b \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{4 x^2}-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3}+\frac{1}{8} b^2 \int \frac{1}{x^2 \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=-\frac{b^2}{8 x \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{4 x^2}-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3}-\frac{1}{16} b^3 \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx\\ &=-\frac{b^2}{8 x \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b^3}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{4 x^2}-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3}-\frac{b^3 \int \frac{1}{x \sqrt{\tanh ^{-1}(\tanh (a+b x))}} \, dx}{16 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac{b^3 \tan ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}}-\frac{b^2}{8 x \sqrt{\tanh ^{-1}(\tanh (a+b x))}}+\frac{b^3}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt{\tanh ^{-1}(\tanh (a+b x))}}-\frac{b \sqrt{\tanh ^{-1}(\tanh (a+b x))}}{4 x^2}-\frac{\tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 x^3}\\ \end{align*}

Mathematica [A]  time = 0.0918898, size = 117, normalized size = 0.8 \[ \sqrt{\tanh ^{-1}(\tanh (a+b x))} \left (-\frac{b^2}{8 x \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )}-\frac{\tanh ^{-1}(\tanh (a+b x))-b x}{3 x^3}-\frac{7 b}{12 x^2}\right )+\frac{b^3 \tanh ^{-1}\left (\frac{\sqrt{\tanh ^{-1}(\tanh (a+b x))}}{\sqrt{\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{8 \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^(3/2)/x^4,x]

[Out]

(b^3*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(8*(-(b*x) + ArcTanh[Tanh[a
+ b*x]])^(3/2)) + Sqrt[ArcTanh[Tanh[a + b*x]]]*((-7*b)/(12*x^2) - b^2/(8*x*(-(b*x) + ArcTanh[Tanh[a + b*x]]))
- (-(b*x) + ArcTanh[Tanh[a + b*x]])/(3*x^3))

________________________________________________________________________________________

Maple [A]  time = 0.115, size = 116, normalized size = 0.8 \begin{align*} 2\,{b}^{3} \left ({\frac{1}{{x}^{3}{b}^{3}} \left ( -1/16\,{\frac{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) ^{5/2}}{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}-1/6\, \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) ^{3/2}+ \left ( 1/16\,{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -1/16\,bx \right ) \sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) } \right ) }+1/16\,{\frac{1}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{3/2}}{\it Artanh} \left ({\frac{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}{\sqrt{{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx}}} \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(3/2)/x^4,x)

[Out]

2*b^3*((-1/16/(arctanh(tanh(b*x+a))-b*x)*arctanh(tanh(b*x+a))^(5/2)-1/6*arctanh(tanh(b*x+a))^(3/2)+(1/16*arcta
nh(tanh(b*x+a))-1/16*b*x)*arctanh(tanh(b*x+a))^(1/2))/b^3/x^3+1/16/(arctanh(tanh(b*x+a))-b*x)^(3/2)*arctanh(ar
ctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{artanh}\left (\tanh \left (b x + a\right )\right )^{\frac{3}{2}}}{x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^4,x, algorithm="maxima")

[Out]

integrate(arctanh(tanh(b*x + a))^(3/2)/x^4, x)

________________________________________________________________________________________

Fricas [A]  time = 2.18842, size = 351, normalized size = 2.4 \begin{align*} \left [\frac{3 \, \sqrt{a} b^{3} x^{3} \log \left (\frac{b x + 2 \, \sqrt{b x + a} \sqrt{a} + 2 \, a}{x}\right ) - 2 \,{\left (3 \, a b^{2} x^{2} + 14 \, a^{2} b x + 8 \, a^{3}\right )} \sqrt{b x + a}}{48 \, a^{2} x^{3}}, -\frac{3 \, \sqrt{-a} b^{3} x^{3} \arctan \left (\frac{\sqrt{b x + a} \sqrt{-a}}{a}\right ) +{\left (3 \, a b^{2} x^{2} + 14 \, a^{2} b x + 8 \, a^{3}\right )} \sqrt{b x + a}}{24 \, a^{2} x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^4,x, algorithm="fricas")

[Out]

[1/48*(3*sqrt(a)*b^3*x^3*log((b*x + 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*(3*a*b^2*x^2 + 14*a^2*b*x + 8*a^3)*s
qrt(b*x + a))/(a^2*x^3), -1/24*(3*sqrt(-a)*b^3*x^3*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (3*a*b^2*x^2 + 14*a^2*b*
x + 8*a^3)*sqrt(b*x + a))/(a^2*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{atanh}^{\frac{3}{2}}{\left (\tanh{\left (a + b x \right )} \right )}}{x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(3/2)/x**4,x)

[Out]

Integral(atanh(tanh(a + b*x))**(3/2)/x**4, x)

________________________________________________________________________________________

Giac [A]  time = 1.20262, size = 126, normalized size = 0.86 \begin{align*} -\frac{\sqrt{2}{\left (\frac{3 \, \sqrt{2} b^{4} \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a} + \frac{\sqrt{2}{\left (3 \,{\left (b x + a\right )}^{\frac{5}{2}} b^{4} + 8 \,{\left (b x + a\right )}^{\frac{3}{2}} a b^{4} - 3 \, \sqrt{b x + a} a^{2} b^{4}\right )}}{a b^{3} x^{3}}\right )}}{48 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^4,x, algorithm="giac")

[Out]

-1/48*sqrt(2)*(3*sqrt(2)*b^4*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a) + sqrt(2)*(3*(b*x + a)^(5/2)*b^4 + 8*
(b*x + a)^(3/2)*a*b^4 - 3*sqrt(b*x + a)*a^2*b^4)/(a*b^3*x^3))/b