3.115 \(\int \sqrt{\tanh ^{-1}(\tanh (a+b x))} \, dx\)

Optimal. Leaf size=18 \[ \frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b} \]

[Out]

(2*ArcTanh[Tanh[a + b*x]]^(3/2))/(3*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0047037, antiderivative size = 18, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {2157, 30} \[ \frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[ArcTanh[Tanh[a + b*x]]],x]

[Out]

(2*ArcTanh[Tanh[a + b*x]]^(3/2))/(3*b)

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \sqrt{\tanh ^{-1}(\tanh (a+b x))} \, dx &=\frac{\operatorname{Subst}\left (\int \sqrt{x} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{b}\\ &=\frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b}\\ \end{align*}

Mathematica [A]  time = 0.0064963, size = 18, normalized size = 1. \[ \frac{2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[ArcTanh[Tanh[a + b*x]]],x]

[Out]

(2*ArcTanh[Tanh[a + b*x]]^(3/2))/(3*b)

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 15, normalized size = 0.8 \begin{align*}{\frac{2}{3\,b} \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(1/2),x)

[Out]

2/3*arctanh(tanh(b*x+a))^(3/2)/b

________________________________________________________________________________________

Maxima [A]  time = 1.6853, size = 16, normalized size = 0.89 \begin{align*} \frac{2 \,{\left (b x + a\right )}^{\frac{3}{2}}}{3 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

2/3*(b*x + a)^(3/2)/b

________________________________________________________________________________________

Fricas [A]  time = 1.50621, size = 31, normalized size = 1.72 \begin{align*} \frac{2 \,{\left (b x + a\right )}^{\frac{3}{2}}}{3 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

2/3*(b*x + a)^(3/2)/b

________________________________________________________________________________________

Sympy [A]  time = 0.754845, size = 26, normalized size = 1.44 \begin{align*} \begin{cases} \frac{2 \operatorname{atanh}^{\frac{3}{2}}{\left (\tanh{\left (a + b x \right )} \right )}}{3 b} & \text{for}\: b \neq 0 \\x \sqrt{\operatorname{atanh}{\left (\tanh{\left (a \right )} \right )}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(1/2),x)

[Out]

Piecewise((2*atanh(tanh(a + b*x))**(3/2)/(3*b), Ne(b, 0)), (x*sqrt(atanh(tanh(a))), True))

________________________________________________________________________________________

Giac [A]  time = 1.15123, size = 24, normalized size = 1.33 \begin{align*} \frac{\sqrt{2}{\left (2 \, b x + 2 \, a\right )}^{\frac{3}{2}}}{6 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2),x, algorithm="giac")

[Out]

1/6*sqrt(2)*(2*b*x + 2*a)^(3/2)/b