3.101 \(\int \frac{1}{x^3 \tanh ^{-1}(\tanh (a+b x))^2} \, dx\)

Optimal. Leaf size=143 \[ -\frac{3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac{3 b^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))} \]

[Out]

(-3*b^2)/((b*x - ArcTanh[Tanh[a + b*x]])^3*ArcTanh[Tanh[a + b*x]]) + (3*b)/(2*x*(b*x - ArcTanh[Tanh[a + b*x]])
^2*ArcTanh[Tanh[a + b*x]]) + 1/(2*x^2*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]) + (3*b^2*Log[x])/
(b*x - ArcTanh[Tanh[a + b*x]])^4 - (3*b^2*Log[ArcTanh[Tanh[a + b*x]]])/(b*x - ArcTanh[Tanh[a + b*x]])^4

________________________________________________________________________________________

Rubi [A]  time = 0.0961146, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385, Rules used = {2171, 2163, 2160, 2157, 29} \[ -\frac{3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac{3 b^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

(-3*b^2)/((b*x - ArcTanh[Tanh[a + b*x]])^3*ArcTanh[Tanh[a + b*x]]) + (3*b)/(2*x*(b*x - ArcTanh[Tanh[a + b*x]])
^2*ArcTanh[Tanh[a + b*x]]) + 1/(2*x^2*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]) + (3*b^2*Log[x])/
(b*x - ArcTanh[Tanh[a + b*x]])^4 - (3*b^2*Log[ArcTanh[Tanh[a + b*x]]])/(b*x - ArcTanh[Tanh[a + b*x]])^4

Rule 2171

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] + Dist[(b*(m + n + 2))/((m + 1)*(b*u - a*v)), Int[u^(m + 1)*v^n, x], x] /;
NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m, -1]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2160

Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Dist[b/(b*u - a*v), Int[1
/v, x], x] - Dist[a/(b*u - a*v), Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \tanh ^{-1}(\tanh (a+b x))^2} \, dx &=\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac{(3 b) \int \frac{1}{x^2 \tanh ^{-1}(\tanh (a+b x))^2} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}-\frac{\left (3 b^2\right ) \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))^2} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac{3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}-\frac{\left (3 b^2\right ) \int \frac{1}{x \tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac{3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac{\left (3 b^2\right ) \int \frac{1}{x} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac{\left (3 b^3\right ) \int \frac{1}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac{3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac{\left (3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{x} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac{3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac{1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac{3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac{3 b^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}\\ \end{align*}

Mathematica [A]  time = 0.0483696, size = 92, normalized size = 0.64 \[ -\frac{-3 b^2 x^2 \tanh ^{-1}(\tanh (a+b x)) \left (-2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )+2 \log (x)-1\right )-6 b x \tanh ^{-1}(\tanh (a+b x))^2+\tanh ^{-1}(\tanh (a+b x))^3+2 b^3 x^3}{2 x^2 \tanh ^{-1}(\tanh (a+b x)) \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

-(2*b^3*x^3 - 6*b*x*ArcTanh[Tanh[a + b*x]]^2 + ArcTanh[Tanh[a + b*x]]^3 - 3*b^2*x^2*ArcTanh[Tanh[a + b*x]]*(-1
 + 2*Log[x] - 2*Log[ArcTanh[Tanh[a + b*x]]]))/(2*x^2*ArcTanh[Tanh[a + b*x]]*(-(b*x) + ArcTanh[Tanh[a + b*x]])^
4)

________________________________________________________________________________________

Maple [A]  time = 0.089, size = 116, normalized size = 0.8 \begin{align*} -3\,{\frac{{b}^{2}\ln \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) \right ) }{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{4}}}+{\frac{{b}^{2}}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{3}{\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) }}-{\frac{1}{2\, \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{2}{x}^{2}}}+3\,{\frac{{b}^{2}\ln \left ( x \right ) }{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{4}}}+2\,{\frac{b}{ \left ({\it Artanh} \left ( \tanh \left ( bx+a \right ) \right ) -bx \right ) ^{3}x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/arctanh(tanh(b*x+a))^2,x)

[Out]

-3/(arctanh(tanh(b*x+a))-b*x)^4*b^2*ln(arctanh(tanh(b*x+a)))+1/(arctanh(tanh(b*x+a))-b*x)^3*b^2/arctanh(tanh(b
*x+a))-1/2/(arctanh(tanh(b*x+a))-b*x)^2/x^2+3/(arctanh(tanh(b*x+a))-b*x)^4*b^2*ln(x)+2/(arctanh(tanh(b*x+a))-b
*x)^3*b/x

________________________________________________________________________________________

Maxima [A]  time = 2.42335, size = 86, normalized size = 0.6 \begin{align*} \frac{6 \, b^{2} x^{2} + 3 \, a b x - a^{2}}{2 \,{\left (a^{3} b x^{3} + a^{4} x^{2}\right )}} - \frac{3 \, b^{2} \log \left (b x + a\right )}{a^{4}} + \frac{3 \, b^{2} \log \left (x\right )}{a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^2,x, algorithm="maxima")

[Out]

1/2*(6*b^2*x^2 + 3*a*b*x - a^2)/(a^3*b*x^3 + a^4*x^2) - 3*b^2*log(b*x + a)/a^4 + 3*b^2*log(x)/a^4

________________________________________________________________________________________

Fricas [A]  time = 1.5043, size = 177, normalized size = 1.24 \begin{align*} \frac{6 \, a b^{2} x^{2} + 3 \, a^{2} b x - a^{3} - 6 \,{\left (b^{3} x^{3} + a b^{2} x^{2}\right )} \log \left (b x + a\right ) + 6 \,{\left (b^{3} x^{3} + a b^{2} x^{2}\right )} \log \left (x\right )}{2 \,{\left (a^{4} b x^{3} + a^{5} x^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^2,x, algorithm="fricas")

[Out]

1/2*(6*a*b^2*x^2 + 3*a^2*b*x - a^3 - 6*(b^3*x^3 + a*b^2*x^2)*log(b*x + a) + 6*(b^3*x^3 + a*b^2*x^2)*log(x))/(a
^4*b*x^3 + a^5*x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \operatorname{atanh}^{2}{\left (\tanh{\left (a + b x \right )} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/atanh(tanh(b*x+a))**2,x)

[Out]

Integral(1/(x**3*atanh(tanh(a + b*x))**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.15376, size = 86, normalized size = 0.6 \begin{align*} -\frac{3 \, b^{2} \log \left ({\left | b x + a \right |}\right )}{a^{4}} + \frac{3 \, b^{2} \log \left ({\left | x \right |}\right )}{a^{4}} + \frac{6 \, a b^{2} x^{2} + 3 \, a^{2} b x - a^{3}}{2 \,{\left (b x + a\right )} a^{4} x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^2,x, algorithm="giac")

[Out]

-3*b^2*log(abs(b*x + a))/a^4 + 3*b^2*log(abs(x))/a^4 + 1/2*(6*a*b^2*x^2 + 3*a^2*b*x - a^3)/((b*x + a)*a^4*x^2)