3.98 \(\int \frac{e^{-\frac{1}{2} \tanh ^{-1}(a x)}}{x^4} \, dx\)

Optimal. Leaf size=139 \[ -\frac{11 a^2 \sqrt [4]{1-a x} (a x+1)^{3/4}}{24 x}-\frac{3}{8} a^3 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\frac{3}{8} a^3 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\frac{5 a \sqrt [4]{1-a x} (a x+1)^{3/4}}{12 x^2}-\frac{\sqrt [4]{1-a x} (a x+1)^{3/4}}{3 x^3} \]

[Out]

-((1 - a*x)^(1/4)*(1 + a*x)^(3/4))/(3*x^3) + (5*a*(1 - a*x)^(1/4)*(1 + a*x)^(3/4))/(12*x^2) - (11*a^2*(1 - a*x
)^(1/4)*(1 + a*x)^(3/4))/(24*x) - (3*a^3*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)])/8 + (3*a^3*ArcTanh[(1 + a*x)
^(1/4)/(1 - a*x)^(1/4)])/8

________________________________________________________________________________________

Rubi [A]  time = 0.0619941, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.571, Rules used = {6126, 99, 151, 12, 93, 298, 203, 206} \[ -\frac{11 a^2 \sqrt [4]{1-a x} (a x+1)^{3/4}}{24 x}-\frac{3}{8} a^3 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\frac{3}{8} a^3 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\frac{5 a \sqrt [4]{1-a x} (a x+1)^{3/4}}{12 x^2}-\frac{\sqrt [4]{1-a x} (a x+1)^{3/4}}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(ArcTanh[a*x]/2)*x^4),x]

[Out]

-((1 - a*x)^(1/4)*(1 + a*x)^(3/4))/(3*x^3) + (5*a*(1 - a*x)^(1/4)*(1 + a*x)^(3/4))/(12*x^2) - (11*a^2*(1 - a*x
)^(1/4)*(1 + a*x)^(3/4))/(24*x) - (3*a^3*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)])/8 + (3*a^3*ArcTanh[(1 + a*x)
^(1/4)/(1 - a*x)^(1/4)])/8

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-\frac{1}{2} \tanh ^{-1}(a x)}}{x^4} \, dx &=\int \frac{\sqrt [4]{1-a x}}{x^4 \sqrt [4]{1+a x}} \, dx\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{1}{3} \int \frac{-\frac{5 a}{2}+2 a^2 x}{x^3 (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{5 a \sqrt [4]{1-a x} (1+a x)^{3/4}}{12 x^2}-\frac{1}{6} \int \frac{-\frac{11 a^2}{4}+\frac{5 a^3 x}{2}}{x^2 (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{5 a \sqrt [4]{1-a x} (1+a x)^{3/4}}{12 x^2}-\frac{11 a^2 \sqrt [4]{1-a x} (1+a x)^{3/4}}{24 x}+\frac{1}{6} \int -\frac{9 a^3}{8 x (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{5 a \sqrt [4]{1-a x} (1+a x)^{3/4}}{12 x^2}-\frac{11 a^2 \sqrt [4]{1-a x} (1+a x)^{3/4}}{24 x}-\frac{1}{16} \left (3 a^3\right ) \int \frac{1}{x (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{5 a \sqrt [4]{1-a x} (1+a x)^{3/4}}{12 x^2}-\frac{11 a^2 \sqrt [4]{1-a x} (1+a x)^{3/4}}{24 x}-\frac{1}{4} \left (3 a^3\right ) \operatorname{Subst}\left (\int \frac{x^2}{-1+x^4} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{5 a \sqrt [4]{1-a x} (1+a x)^{3/4}}{12 x^2}-\frac{11 a^2 \sqrt [4]{1-a x} (1+a x)^{3/4}}{24 x}+\frac{1}{8} \left (3 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-\frac{1}{8} \left (3 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\frac{\sqrt [4]{1-a x} (1+a x)^{3/4}}{3 x^3}+\frac{5 a \sqrt [4]{1-a x} (1+a x)^{3/4}}{12 x^2}-\frac{11 a^2 \sqrt [4]{1-a x} (1+a x)^{3/4}}{24 x}-\frac{3}{8} a^3 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{3}{8} a^3 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0219663, size = 78, normalized size = 0.56 \[ \frac{\sqrt [4]{1-a x} \left (18 a^3 x^3 \text{Hypergeometric2F1}\left (\frac{1}{4},1,\frac{5}{4},\frac{1-a x}{a x+1}\right )-11 a^3 x^3-a^2 x^2+2 a x-8\right )}{24 x^3 \sqrt [4]{a x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^(ArcTanh[a*x]/2)*x^4),x]

[Out]

((1 - a*x)^(1/4)*(-8 + 2*a*x - a^2*x^2 - 11*a^3*x^3 + 18*a^3*x^3*Hypergeometric2F1[1/4, 1, 5/4, (1 - a*x)/(1 +
 a*x)]))/(24*x^3*(1 + a*x)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.092, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{4}}{\frac{1}{\sqrt{{(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^4,x)

[Out]

int(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^4,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{4} \sqrt{\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^4,x, algorithm="maxima")

[Out]

integrate(1/(x^4*sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.82132, size = 360, normalized size = 2.59 \begin{align*} -\frac{18 \, a^{3} x^{3} \arctan \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}\right ) - 9 \, a^{3} x^{3} \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) + 9 \, a^{3} x^{3} \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) + 2 \,{\left (11 \, a^{2} x^{2} - 10 \, a x + 8\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}}{48 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^4,x, algorithm="fricas")

[Out]

-1/48*(18*a^3*x^3*arctan(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))) - 9*a^3*x^3*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x -
1)) + 1) + 9*a^3*x^3*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) + 2*(11*a^2*x^2 - 10*a*x + 8)*sqrt(-a^2*x^2
+ 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)))/x^3

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a**2*x**2+1)**(1/2))**(1/2)/x**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{4} \sqrt{\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^4,x, algorithm="giac")

[Out]

integrate(1/(x^4*sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))), x)