3.963 \(\int \frac{e^{\tanh ^{-1}(a x)}}{x^2 \sqrt{c-a^2 c x^2}} \, dx\)

Optimal. Leaf size=107 \[ -\frac{\sqrt{1-a^2 x^2}}{x \sqrt{c-a^2 c x^2}}+\frac{a \sqrt{1-a^2 x^2} \log (x)}{\sqrt{c-a^2 c x^2}}-\frac{a \sqrt{1-a^2 x^2} \log (1-a x)}{\sqrt{c-a^2 c x^2}} \]

[Out]

-(Sqrt[1 - a^2*x^2]/(x*Sqrt[c - a^2*c*x^2])) + (a*Sqrt[1 - a^2*x^2]*Log[x])/Sqrt[c - a^2*c*x^2] - (a*Sqrt[1 -
a^2*x^2]*Log[1 - a*x])/Sqrt[c - a^2*c*x^2]

________________________________________________________________________________________

Rubi [A]  time = 0.190474, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {6153, 6150, 44} \[ -\frac{\sqrt{1-a^2 x^2}}{x \sqrt{c-a^2 c x^2}}+\frac{a \sqrt{1-a^2 x^2} \log (x)}{\sqrt{c-a^2 c x^2}}-\frac{a \sqrt{1-a^2 x^2} \log (1-a x)}{\sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]/(x^2*Sqrt[c - a^2*c*x^2]),x]

[Out]

-(Sqrt[1 - a^2*x^2]/(x*Sqrt[c - a^2*c*x^2])) + (a*Sqrt[1 - a^2*x^2]*Log[x])/Sqrt[c - a^2*c*x^2] - (a*Sqrt[1 -
a^2*x^2]*Log[1 - a*x])/Sqrt[c - a^2*c*x^2]

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)}}{x^2 \sqrt{c-a^2 c x^2}} \, dx &=\frac{\sqrt{1-a^2 x^2} \int \frac{e^{\tanh ^{-1}(a x)}}{x^2 \sqrt{1-a^2 x^2}} \, dx}{\sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{1}{x^2 (1-a x)} \, dx}{\sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \left (\frac{1}{x^2}+\frac{a}{x}-\frac{a^2}{-1+a x}\right ) \, dx}{\sqrt{c-a^2 c x^2}}\\ &=-\frac{\sqrt{1-a^2 x^2}}{x \sqrt{c-a^2 c x^2}}+\frac{a \sqrt{1-a^2 x^2} \log (x)}{\sqrt{c-a^2 c x^2}}-\frac{a \sqrt{1-a^2 x^2} \log (1-a x)}{\sqrt{c-a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0296793, size = 50, normalized size = 0.47 \[ \frac{\sqrt{1-a^2 x^2} \left (a \log (x)-a \log (1-a x)-\frac{1}{x}\right )}{\sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTanh[a*x]/(x^2*Sqrt[c - a^2*c*x^2]),x]

[Out]

(Sqrt[1 - a^2*x^2]*(-x^(-1) + a*Log[x] - a*Log[1 - a*x]))/Sqrt[c - a^2*c*x^2]

________________________________________________________________________________________

Maple [A]  time = 0.089, size = 62, normalized size = 0.6 \begin{align*}{\frac{-a\ln \left ( x \right ) x+\ln \left ( ax-1 \right ) xa+1}{c \left ({a}^{2}{x}^{2}-1 \right ) x}\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2/(-a^2*c*x^2+c)^(1/2),x)

[Out]

(-a*ln(x)*x+ln(a*x-1)*x*a+1)*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)/(a^2*x^2-1)/c/x

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a x + 1}{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2/(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)/(sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.64452, size = 894, normalized size = 8.36 \begin{align*} \left [\frac{{\left (a^{3} x^{3} - a x\right )} \sqrt{c} \log \left (-\frac{4 \, a^{5} c x^{5} -{\left (2 \, a^{6} - 4 \, a^{5} + 6 \, a^{4} - 4 \, a^{3} + a^{2}\right )} c x^{6} -{\left (4 \, a^{4} + 4 \, a^{3} - 6 \, a^{2} + 4 \, a - 1\right )} c x^{4} + 5 \, a^{2} c x^{2} - 4 \, a c x +{\left (4 \, a^{3} x^{3} -{\left (4 \, a^{3} - 6 \, a^{2} + 4 \, a - 1\right )} x^{4} - 6 \, a^{2} x^{2} + 4 \, a x - 1\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} \sqrt{c} + c}{a^{4} x^{6} - 2 \, a^{3} x^{5} + 2 \, a x^{3} - x^{2}}\right ) - 2 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}{\left (x - 1\right )}}{2 \,{\left (a^{2} c x^{3} - c x\right )}}, -\frac{{\left (a^{3} x^{3} - a x\right )} \sqrt{-c} \arctan \left (-\frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}{\left ({\left (2 \, a^{2} - 2 \, a + 1\right )} x^{2} - 2 \, a x + 1\right )} \sqrt{-c}}{2 \, a^{3} c x^{3} -{\left (2 \, a^{3} - a^{2}\right )} c x^{4} -{\left (a^{2} - 2 \, a + 1\right )} c x^{2} - 2 \, a c x + c}\right ) + \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}{\left (x - 1\right )}}{a^{2} c x^{3} - c x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2/(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((a^3*x^3 - a*x)*sqrt(c)*log(-(4*a^5*c*x^5 - (2*a^6 - 4*a^5 + 6*a^4 - 4*a^3 + a^2)*c*x^6 - (4*a^4 + 4*a^3
 - 6*a^2 + 4*a - 1)*c*x^4 + 5*a^2*c*x^2 - 4*a*c*x + (4*a^3*x^3 - (4*a^3 - 6*a^2 + 4*a - 1)*x^4 - 6*a^2*x^2 + 4
*a*x - 1)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*sqrt(c) + c)/(a^4*x^6 - 2*a^3*x^5 + 2*a*x^3 - x^2)) - 2*sqrt
(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*(x - 1))/(a^2*c*x^3 - c*x), -((a^3*x^3 - a*x)*sqrt(-c)*arctan(-sqrt(-a^2*c
*x^2 + c)*sqrt(-a^2*x^2 + 1)*((2*a^2 - 2*a + 1)*x^2 - 2*a*x + 1)*sqrt(-c)/(2*a^3*c*x^3 - (2*a^3 - a^2)*c*x^4 -
 (a^2 - 2*a + 1)*c*x^2 - 2*a*c*x + c)) + sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*(x - 1))/(a^2*c*x^3 - c*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a x + 1}{x^{2} \sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)/x**2/(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral((a*x + 1)/(x**2*sqrt(-(a*x - 1)*(a*x + 1))*sqrt(-c*(a*x - 1)*(a*x + 1))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a x + 1}{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2/(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*x + 1)/(sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x^2), x)