3.75 \(\int \frac{e^{\frac{3}{2} \tanh ^{-1}(a x)}}{x} \, dx\)

Optimal. Leaf size=227 \[ \frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}-\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )-\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

[Out]

2*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - Sq
rt[2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - 2*ArcTanh[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Log
[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/Sqrt[2] - Log[1 + Sqrt[1 - a*x]/
Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/Sqrt[2]

________________________________________________________________________________________

Rubi [A]  time = 0.15811, antiderivative size = 227, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 14, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 1., Rules used = {6126, 105, 63, 240, 211, 1165, 628, 1162, 617, 204, 93, 298, 203, 206} \[ \frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}-\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )-\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^((3*ArcTanh[a*x])/2)/x,x]

[Out]

2*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - Sq
rt[2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - 2*ArcTanh[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Log
[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/Sqrt[2] - Log[1 + Sqrt[1 - a*x]/
Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/Sqrt[2]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{\frac{3}{2} \tanh ^{-1}(a x)}}{x} \, dx &=\int \frac{(1+a x)^{3/4}}{x (1-a x)^{3/4}} \, dx\\ &=a \int \frac{1}{(1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx+\int \frac{1}{x (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\left (4 \operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{2-x^4}} \, dx,x,\sqrt [4]{1-a x}\right )\right )+4 \operatorname{Subst}\left (\int \frac{x^2}{-1+x^4} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\left (2 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\right )+2 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-4 \operatorname{Subst}\left (\int \frac{1}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-2 \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-\operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )+\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-\sqrt{2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}\\ \end{align*}

Mathematica [C]  time = 0.0291235, size = 83, normalized size = 0.37 \[ -2\ 2^{3/4} \sqrt [4]{1-a x} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{4},\frac{5}{4},\frac{1}{2} (1-a x)\right )-\frac{4 \sqrt [4]{1-a x} \text{Hypergeometric2F1}\left (\frac{1}{4},1,\frac{5}{4},-\frac{1-a x}{-a x-1}\right )}{\sqrt [4]{a x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((3*ArcTanh[a*x])/2)/x,x]

[Out]

-2*2^(3/4)*(1 - a*x)^(1/4)*Hypergeometric2F1[1/4, 1/4, 5/4, (1 - a*x)/2] - (4*(1 - a*x)^(1/4)*Hypergeometric2F
1[1/4, 1, 5/4, -((1 - a*x)/(-1 - a*x))])/(1 + a*x)^(1/4)

________________________________________________________________________________________

Maple [F]  time = 0.093, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x} \left ({(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) ^{{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x,x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}\right )^{\frac{3}{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x,x, algorithm="maxima")

[Out]

integrate(((a*x + 1)/sqrt(-a^2*x^2 + 1))^(3/2)/x, x)

________________________________________________________________________________________

Fricas [B]  time = 1.8377, size = 999, normalized size = 4.4 \begin{align*} -2 \, \sqrt{2} \arctan \left (\sqrt{2} \sqrt{\frac{a x + \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1}{a x - 1}} - \sqrt{2} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) - 2 \, \sqrt{2} \arctan \left (\sqrt{2} \sqrt{\frac{a x - \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1}{a x - 1}} - \sqrt{2} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) - \frac{1}{2} \, \sqrt{2} \log \left (\frac{4 \,{\left (a x + \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1\right )}}{a x - 1}\right ) + \frac{1}{2} \, \sqrt{2} \log \left (\frac{4 \,{\left (a x - \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1\right )}}{a x - 1}\right ) + 2 \, \arctan \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}\right ) - \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) + \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x,x, algorithm="fricas")

[Out]

-2*sqrt(2)*arctan(sqrt(2)*sqrt((a*x + sqrt(2)*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - sqrt(-a^2*x^2 +
1) - 1)/(a*x - 1)) - sqrt(2)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) - 2*sqrt(2)*arctan(sqrt(2)*sqrt((a*x - s
qrt(2)*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - sqrt(-a^2*x^2 + 1) - 1)/(a*x - 1)) - sqrt(2)*sqrt(-sqrt
(-a^2*x^2 + 1)/(a*x - 1)) + 1) - 1/2*sqrt(2)*log(4*(a*x + sqrt(2)*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)
) - sqrt(-a^2*x^2 + 1) - 1)/(a*x - 1)) + 1/2*sqrt(2)*log(4*(a*x - sqrt(2)*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(
a*x - 1)) - sqrt(-a^2*x^2 + 1) - 1)/(a*x - 1)) + 2*arctan(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))) - log(sqrt(-sqr
t(-a^2*x^2 + 1)/(a*x - 1)) + 1) + log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(3/2)/x,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}\right )^{\frac{3}{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x,x, algorithm="giac")

[Out]

integrate(((a*x + 1)/sqrt(-a^2*x^2 + 1))^(3/2)/x, x)