3.708 \(\int e^{3 \tanh ^{-1}(a x)} (c-\frac{c}{a^2 x^2})^{3/2} \, dx\)

Optimal. Leaf size=145 \[ \frac{a^3 x^4 \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{\left (1-a^2 x^2\right )^{3/2}}-\frac{3 a x^2 \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{\left (1-a^2 x^2\right )^{3/2}}-\frac{x \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{2 \left (1-a^2 x^2\right )^{3/2}}+\frac{3 a^2 x^3 \log (x) \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{\left (1-a^2 x^2\right )^{3/2}} \]

[Out]

-((c - c/(a^2*x^2))^(3/2)*x)/(2*(1 - a^2*x^2)^(3/2)) - (3*a*(c - c/(a^2*x^2))^(3/2)*x^2)/(1 - a^2*x^2)^(3/2) +
 (a^3*(c - c/(a^2*x^2))^(3/2)*x^4)/(1 - a^2*x^2)^(3/2) + (3*a^2*(c - c/(a^2*x^2))^(3/2)*x^3*Log[x])/(1 - a^2*x
^2)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.170008, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {6160, 6150, 43} \[ \frac{a^3 x^4 \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{\left (1-a^2 x^2\right )^{3/2}}-\frac{3 a x^2 \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{\left (1-a^2 x^2\right )^{3/2}}-\frac{x \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{2 \left (1-a^2 x^2\right )^{3/2}}+\frac{3 a^2 x^3 \log (x) \left (c-\frac{c}{a^2 x^2}\right )^{3/2}}{\left (1-a^2 x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*(c - c/(a^2*x^2))^(3/2),x]

[Out]

-((c - c/(a^2*x^2))^(3/2)*x)/(2*(1 - a^2*x^2)^(3/2)) - (3*a*(c - c/(a^2*x^2))^(3/2)*x^2)/(1 - a^2*x^2)^(3/2) +
 (a^3*(c - c/(a^2*x^2))^(3/2)*x^4)/(1 - a^2*x^2)^(3/2) + (3*a^2*(c - c/(a^2*x^2))^(3/2)*x^3*Log[x])/(1 - a^2*x
^2)^(3/2)

Rule 6160

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/
(1 + (c*x^2)/d)^p, Int[(u*(1 + (c*x^2)/d)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] &
& EqQ[c + a^2*d, 0] &&  !IntegerQ[p] &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{3 \tanh ^{-1}(a x)} \left (c-\frac{c}{a^2 x^2}\right )^{3/2} \, dx &=\frac{\left (\left (c-\frac{c}{a^2 x^2}\right )^{3/2} x^3\right ) \int \frac{e^{3 \tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^{3/2}}{x^3} \, dx}{\left (1-a^2 x^2\right )^{3/2}}\\ &=\frac{\left (\left (c-\frac{c}{a^2 x^2}\right )^{3/2} x^3\right ) \int \frac{(1+a x)^3}{x^3} \, dx}{\left (1-a^2 x^2\right )^{3/2}}\\ &=\frac{\left (\left (c-\frac{c}{a^2 x^2}\right )^{3/2} x^3\right ) \int \left (a^3+\frac{1}{x^3}+\frac{3 a}{x^2}+\frac{3 a^2}{x}\right ) \, dx}{\left (1-a^2 x^2\right )^{3/2}}\\ &=-\frac{\left (c-\frac{c}{a^2 x^2}\right )^{3/2} x}{2 \left (1-a^2 x^2\right )^{3/2}}-\frac{3 a \left (c-\frac{c}{a^2 x^2}\right )^{3/2} x^2}{\left (1-a^2 x^2\right )^{3/2}}+\frac{a^3 \left (c-\frac{c}{a^2 x^2}\right )^{3/2} x^4}{\left (1-a^2 x^2\right )^{3/2}}+\frac{3 a^2 \left (c-\frac{c}{a^2 x^2}\right )^{3/2} x^3 \log (x)}{\left (1-a^2 x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.038023, size = 64, normalized size = 0.44 \[ -\frac{c \sqrt{c-\frac{c}{a^2 x^2}} \left (2 a^3 x^3+6 a^2 x^2 \log (x)-6 a x-1\right )}{2 a^2 x \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a*x])*(c - c/(a^2*x^2))^(3/2),x]

[Out]

-(c*Sqrt[c - c/(a^2*x^2)]*(-1 - 6*a*x + 2*a^3*x^3 + 6*a^2*x^2*Log[x]))/(2*a^2*x*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.156, size = 70, normalized size = 0.5 \begin{align*}{\frac{x \left ( 2\,{x}^{3}{a}^{3}+6\,{a}^{2}\ln \left ( x \right ){x}^{2}-6\,ax-1 \right ) }{2\, \left ({a}^{2}{x}^{2}-1 \right ) ^{2}} \left ({\frac{c \left ({a}^{2}{x}^{2}-1 \right ) }{{a}^{2}{x}^{2}}} \right ) ^{{\frac{3}{2}}}\sqrt{-{a}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(3/2),x)

[Out]

1/2*(c*(a^2*x^2-1)/a^2/x^2)^(3/2)*x/(a^2*x^2-1)^2*(-a^2*x^2+1)^(1/2)*(2*x^3*a^3+6*a^2*ln(x)*x^2-6*a*x-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )}^{3}{\left (c - \frac{c}{a^{2} x^{2}}\right )}^{\frac{3}{2}}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)^3*(c - c/(a^2*x^2))^(3/2)/(-a^2*x^2 + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.23374, size = 779, normalized size = 5.37 \begin{align*} \left [\frac{3 \,{\left (a^{3} c x^{3} - a c x\right )} \sqrt{-c} \log \left (\frac{a^{2} c x^{6} + a^{2} c x^{2} - c x^{4} -{\left (a x^{5} - a x\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{-c} \sqrt{\frac{a^{2} c x^{2} - c}{a^{2} x^{2}}} - c}{a^{2} x^{4} - x^{2}}\right ) +{\left (2 \, a^{3} c x^{3} -{\left (2 \, a^{3} - 6 \, a - 1\right )} c x^{2} - 6 \, a c x - c\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{\frac{a^{2} c x^{2} - c}{a^{2} x^{2}}}}{2 \,{\left (a^{4} x^{3} - a^{2} x\right )}}, \frac{6 \,{\left (a^{3} c x^{3} - a c x\right )} \sqrt{c} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1}{\left (a x^{3} + a x\right )} \sqrt{c} \sqrt{\frac{a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{4} -{\left (a^{2} + 1\right )} c x^{2} + c}\right ) +{\left (2 \, a^{3} c x^{3} -{\left (2 \, a^{3} - 6 \, a - 1\right )} c x^{2} - 6 \, a c x - c\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{\frac{a^{2} c x^{2} - c}{a^{2} x^{2}}}}{2 \,{\left (a^{4} x^{3} - a^{2} x\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/2*(3*(a^3*c*x^3 - a*c*x)*sqrt(-c)*log((a^2*c*x^6 + a^2*c*x^2 - c*x^4 - (a*x^5 - a*x)*sqrt(-a^2*x^2 + 1)*sqr
t(-c)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - c)/(a^2*x^4 - x^2)) + (2*a^3*c*x^3 - (2*a^3 - 6*a - 1)*c*x^2 - 6*a*c*x
 - c)*sqrt(-a^2*x^2 + 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/(a^4*x^3 - a^2*x), 1/2*(6*(a^3*c*x^3 - a*c*x)*sqrt(c
)*arctan(sqrt(-a^2*x^2 + 1)*(a*x^3 + a*x)*sqrt(c)*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*c*x^4 - (a^2 + 1)*c*x^2
 + c)) + (2*a^3*c*x^3 - (2*a^3 - 6*a - 1)*c*x^2 - 6*a*c*x - c)*sqrt(-a^2*x^2 + 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^
2)))/(a^4*x^3 - a^2*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- c \left (-1 + \frac{1}{a x}\right ) \left (1 + \frac{1}{a x}\right )\right )^{\frac{3}{2}} \left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(c-c/a**2/x**2)**(3/2),x)

[Out]

Integral((-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))**(3/2)*(a*x + 1)**3/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )}^{3}{\left (c - \frac{c}{a^{2} x^{2}}\right )}^{\frac{3}{2}}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((a*x + 1)^3*(c - c/(a^2*x^2))^(3/2)/(-a^2*x^2 + 1)^(3/2), x)