3.7 \(\int \frac{e^{\tanh ^{-1}(a x)}}{x^2} \, dx\)

Optimal. Leaf size=38 \[ -\frac{\sqrt{1-a^2 x^2}}{x}-a \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right ) \]

[Out]

-(Sqrt[1 - a^2*x^2]/x) - a*ArcTanh[Sqrt[1 - a^2*x^2]]

________________________________________________________________________________________

Rubi [A]  time = 0.0444022, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {6124, 807, 266, 63, 208} \[ -\frac{\sqrt{1-a^2 x^2}}{x}-a \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]/x^2,x]

[Out]

-(Sqrt[1 - a^2*x^2]/x) - a*ArcTanh[Sqrt[1 - a^2*x^2]]

Rule 6124

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/
2)*Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)}}{x^2} \, dx &=\int \frac{1+a x}{x^2 \sqrt{1-a^2 x^2}} \, dx\\ &=-\frac{\sqrt{1-a^2 x^2}}{x}+a \int \frac{1}{x \sqrt{1-a^2 x^2}} \, dx\\ &=-\frac{\sqrt{1-a^2 x^2}}{x}+\frac{1}{2} a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-a^2 x}} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{1-a^2 x^2}}{x}-\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{1}{a^2}-\frac{x^2}{a^2}} \, dx,x,\sqrt{1-a^2 x^2}\right )}{a}\\ &=-\frac{\sqrt{1-a^2 x^2}}{x}-a \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )\\ \end{align*}

Mathematica [A]  time = 0.0294072, size = 44, normalized size = 1.16 \[ -\frac{\sqrt{1-a^2 x^2}}{x}-a \log \left (\sqrt{1-a^2 x^2}+1\right )+a \log (x) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]/x^2,x]

[Out]

-(Sqrt[1 - a^2*x^2]/x) + a*Log[x] - a*Log[1 + Sqrt[1 - a^2*x^2]]

________________________________________________________________________________________

Maple [A]  time = 0.035, size = 35, normalized size = 0.9 \begin{align*} -{\frac{1}{x}\sqrt{-{a}^{2}{x}^{2}+1}}-a{\it Artanh} \left ({\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2,x)

[Out]

-(-a^2*x^2+1)^(1/2)/x-a*arctanh(1/(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.42873, size = 63, normalized size = 1.66 \begin{align*} -a \log \left (\frac{2 \, \sqrt{-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac{2}{{\left | x \right |}}\right ) - \frac{\sqrt{-a^{2} x^{2} + 1}}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="maxima")

[Out]

-a*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - sqrt(-a^2*x^2 + 1)/x

________________________________________________________________________________________

Fricas [A]  time = 1.95132, size = 84, normalized size = 2.21 \begin{align*} \frac{a x \log \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{x}\right ) - \sqrt{-a^{2} x^{2} + 1}}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="fricas")

[Out]

(a*x*log((sqrt(-a^2*x^2 + 1) - 1)/x) - sqrt(-a^2*x^2 + 1))/x

________________________________________________________________________________________

Sympy [C]  time = 6.42878, size = 65, normalized size = 1.71 \begin{align*} a \left (\begin{cases} - \operatorname{acosh}{\left (\frac{1}{a x} \right )} & \text{for}\: \frac{1}{\left |{a^{2} x^{2}}\right |} > 1 \\i \operatorname{asin}{\left (\frac{1}{a x} \right )} & \text{otherwise} \end{cases}\right ) + \begin{cases} - \frac{i \sqrt{a^{2} x^{2} - 1}}{x} & \text{for}\: \left |{a^{2} x^{2}}\right | > 1 \\- \frac{\sqrt{- a^{2} x^{2} + 1}}{x} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)/x**2,x)

[Out]

a*Piecewise((-acosh(1/(a*x)), 1/Abs(a**2*x**2) > 1), (I*asin(1/(a*x)), True)) + Piecewise((-I*sqrt(a**2*x**2 -
 1)/x, Abs(a**2*x**2) > 1), (-sqrt(-a**2*x**2 + 1)/x, True))

________________________________________________________________________________________

Giac [B]  time = 1.17853, size = 130, normalized size = 3.42 \begin{align*} \frac{a^{4} x}{2 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}{\left | a \right |}} - \frac{a^{2} \log \left (\frac{{\left | -2 \, \sqrt{-a^{2} x^{2} + 1}{\left | a \right |} - 2 \, a \right |}}{2 \, a^{2}{\left | x \right |}}\right )}{{\left | a \right |}} - \frac{\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a}{2 \, x{\left | a \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="giac")

[Out]

1/2*a^4*x/((sqrt(-a^2*x^2 + 1)*abs(a) + a)*abs(a)) - a^2*log(1/2*abs(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*
abs(x)))/abs(a) - 1/2*(sqrt(-a^2*x^2 + 1)*abs(a) + a)/(x*abs(a))