3.66 \(\int \frac{e^{\frac{1}{2} \tanh ^{-1}(a x)}}{x^3} \, dx\)

Optimal. Leaf size=110 \[ -\frac{1}{4} a^2 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-\frac{1}{4} a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-\frac{(1-a x)^{3/4} (a x+1)^{5/4}}{2 x^2}-\frac{a (1-a x)^{3/4} \sqrt [4]{a x+1}}{4 x} \]

[Out]

-(a*(1 - a*x)^(3/4)*(1 + a*x)^(1/4))/(4*x) - ((1 - a*x)^(3/4)*(1 + a*x)^(5/4))/(2*x^2) - (a^2*ArcTan[(1 + a*x)
^(1/4)/(1 - a*x)^(1/4)])/4 - (a^2*ArcTanh[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)])/4

________________________________________________________________________________________

Rubi [A]  time = 0.0438452, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {6126, 96, 94, 93, 212, 206, 203} \[ -\frac{1}{4} a^2 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-\frac{1}{4} a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-\frac{(1-a x)^{3/4} (a x+1)^{5/4}}{2 x^2}-\frac{a (1-a x)^{3/4} \sqrt [4]{a x+1}}{4 x} \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcTanh[a*x]/2)/x^3,x]

[Out]

-(a*(1 - a*x)^(3/4)*(1 + a*x)^(1/4))/(4*x) - ((1 - a*x)^(3/4)*(1 + a*x)^(5/4))/(2*x^2) - (a^2*ArcTan[(1 + a*x)
^(1/4)/(1 - a*x)^(1/4)])/4 - (a^2*ArcTanh[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)])/4

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{\frac{1}{2} \tanh ^{-1}(a x)}}{x^3} \, dx &=\int \frac{\sqrt [4]{1+a x}}{x^3 \sqrt [4]{1-a x}} \, dx\\ &=-\frac{(1-a x)^{3/4} (1+a x)^{5/4}}{2 x^2}+\frac{1}{4} a \int \frac{\sqrt [4]{1+a x}}{x^2 \sqrt [4]{1-a x}} \, dx\\ &=-\frac{a (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 x}-\frac{(1-a x)^{3/4} (1+a x)^{5/4}}{2 x^2}+\frac{1}{8} a^2 \int \frac{1}{x \sqrt [4]{1-a x} (1+a x)^{3/4}} \, dx\\ &=-\frac{a (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 x}-\frac{(1-a x)^{3/4} (1+a x)^{5/4}}{2 x^2}+\frac{1}{2} a^2 \operatorname{Subst}\left (\int \frac{1}{-1+x^4} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\frac{a (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 x}-\frac{(1-a x)^{3/4} (1+a x)^{5/4}}{2 x^2}-\frac{1}{4} a^2 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-\frac{1}{4} a^2 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\frac{a (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 x}-\frac{(1-a x)^{3/4} (1+a x)^{5/4}}{2 x^2}-\frac{1}{4} a^2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-\frac{1}{4} a^2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0172729, size = 70, normalized size = 0.64 \[ -\frac{(1-a x)^{3/4} \left (2 a^2 x^2 \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},\frac{1-a x}{a x+1}\right )+9 a^2 x^2+15 a x+6\right )}{12 x^2 (a x+1)^{3/4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcTanh[a*x]/2)/x^3,x]

[Out]

-((1 - a*x)^(3/4)*(6 + 15*a*x + 9*a^2*x^2 + 2*a^2*x^2*Hypergeometric2F1[3/4, 1, 7/4, (1 - a*x)/(1 + a*x)]))/(1
2*x^2*(1 + a*x)^(3/4))

________________________________________________________________________________________

Maple [F]  time = 0.088, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{3}}\sqrt{{(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^3,x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/x^3, x)

________________________________________________________________________________________

Fricas [A]  time = 1.84158, size = 321, normalized size = 2.92 \begin{align*} -\frac{2 \, a^{2} x^{2} \arctan \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}\right ) + a^{2} x^{2} \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) - a^{2} x^{2} \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) - 2 \,{\left (3 \, a^{2} x^{2} - a x - 2\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}}{8 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^3,x, algorithm="fricas")

[Out]

-1/8*(2*a^2*x^2*arctan(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))) + a^2*x^2*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))
+ 1) - a^2*x^2*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) - 2*(3*a^2*x^2 - a*x - 2)*sqrt(-sqrt(-a^2*x^2 + 1)
/(a*x - 1)))/x^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x + 1}{\sqrt{- a^{2} x^{2} + 1}}}}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(1/2)/x**3,x)

[Out]

Integral(sqrt((a*x + 1)/sqrt(-a**2*x**2 + 1))/x**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/x^3,x, algorithm="giac")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/x^3, x)