3.645 \(\int e^{3 \tanh ^{-1}(a x)} (c-\frac{c}{a^2 x^2})^4 \, dx\)

Optimal. Leaf size=191 \[ -\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 (5 a x+24) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}+\frac{c^4 (5 a x+16) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}-\frac{15 c^4 \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )}{16 a}-\frac{3 c^4 \sin ^{-1}(a x)}{a} \]

[Out]

(-3*c^4*(16 - 5*a*x)*Sqrt[1 - a^2*x^2])/(16*a^2*x) + (c^4*(16 + 5*a*x)*(1 - a^2*x^2)^(3/2))/(16*a^4*x^3) - (c^
4*(24 + 5*a*x)*(1 - a^2*x^2)^(5/2))/(40*a^6*x^5) - (c^4*(1 - a^2*x^2)^(7/2))/(7*a^8*x^7) - (c^4*(1 - a^2*x^2)^
(7/2))/(2*a^7*x^6) - (3*c^4*ArcSin[a*x])/a - (15*c^4*ArcTanh[Sqrt[1 - a^2*x^2]])/(16*a)

________________________________________________________________________________________

Rubi [A]  time = 0.366286, antiderivative size = 191, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 10, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.454, Rules used = {6157, 6148, 1807, 811, 813, 844, 216, 266, 63, 208} \[ -\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 (5 a x+24) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}+\frac{c^4 (5 a x+16) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}-\frac{15 c^4 \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )}{16 a}-\frac{3 c^4 \sin ^{-1}(a x)}{a} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*(c - c/(a^2*x^2))^4,x]

[Out]

(-3*c^4*(16 - 5*a*x)*Sqrt[1 - a^2*x^2])/(16*a^2*x) + (c^4*(16 + 5*a*x)*(1 - a^2*x^2)^(3/2))/(16*a^4*x^3) - (c^
4*(24 + 5*a*x)*(1 - a^2*x^2)^(5/2))/(40*a^6*x^5) - (c^4*(1 - a^2*x^2)^(7/2))/(7*a^8*x^7) - (c^4*(1 - a^2*x^2)^
(7/2))/(2*a^7*x^6) - (3*c^4*ArcSin[a*x])/a - (15*c^4*ArcTanh[Sqrt[1 - a^2*x^2]])/(16*a)

Rule 6157

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[(u*(1 - a^2*x^
2)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]

Rule 6148

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || Gt
Q[c, 0]) && IGtQ[(n + 1)/2, 0] &&  !IntegerQ[p - n/2]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 811

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((d + e*x)^
(m + 1)*(a + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e
^2) + 2*c*d*p*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2
+ a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p + 1
) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2
, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 813

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + c*x^2)^p)/(e^2*(m + 1)*(m + 2*p + 2)), x] + Di
st[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Simp[g*(2*a*e + 2*a*e*m) + (g*(2*c
*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2,
0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
!ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{3 \tanh ^{-1}(a x)} \left (c-\frac{c}{a^2 x^2}\right )^4 \, dx &=\frac{c^4 \int \frac{e^{3 \tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^4}{x^8} \, dx}{a^8}\\ &=\frac{c^4 \int \frac{(1+a x)^3 \left (1-a^2 x^2\right )^{5/2}}{x^8} \, dx}{a^8}\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \int \frac{\left (1-a^2 x^2\right )^{5/2} \left (-21 a-21 a^2 x-7 a^3 x^2\right )}{x^7} \, dx}{7 a^8}\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}+\frac{c^4 \int \frac{\left (126 a^2+21 a^3 x\right ) \left (1-a^2 x^2\right )^{5/2}}{x^6} \, dx}{42 a^8}\\ &=-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{c^4 \int \frac{\left (1008 a^4+210 a^5 x\right ) \left (1-a^2 x^2\right )^{3/2}}{x^4} \, dx}{336 a^8}\\ &=\frac{c^4 (16+5 a x) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}+\frac{c^4 \int \frac{\left (4032 a^6+1260 a^7 x\right ) \sqrt{1-a^2 x^2}}{x^2} \, dx}{1344 a^8}\\ &=-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}+\frac{c^4 (16+5 a x) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{c^4 \int \frac{-2520 a^7+8064 a^8 x}{x \sqrt{1-a^2 x^2}} \, dx}{2688 a^8}\\ &=-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}+\frac{c^4 (16+5 a x) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\left (3 c^4\right ) \int \frac{1}{\sqrt{1-a^2 x^2}} \, dx+\frac{\left (15 c^4\right ) \int \frac{1}{x \sqrt{1-a^2 x^2}} \, dx}{16 a}\\ &=-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}+\frac{c^4 (16+5 a x) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{3 c^4 \sin ^{-1}(a x)}{a}+\frac{\left (15 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-a^2 x}} \, dx,x,x^2\right )}{32 a}\\ &=-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}+\frac{c^4 (16+5 a x) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{3 c^4 \sin ^{-1}(a x)}{a}-\frac{\left (15 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a^2}-\frac{x^2}{a^2}} \, dx,x,\sqrt{1-a^2 x^2}\right )}{16 a^3}\\ &=-\frac{3 c^4 (16-5 a x) \sqrt{1-a^2 x^2}}{16 a^2 x}+\frac{c^4 (16+5 a x) \left (1-a^2 x^2\right )^{3/2}}{16 a^4 x^3}-\frac{c^4 (24+5 a x) \left (1-a^2 x^2\right )^{5/2}}{40 a^6 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{7 a^8 x^7}-\frac{c^4 \left (1-a^2 x^2\right )^{7/2}}{2 a^7 x^6}-\frac{3 c^4 \sin ^{-1}(a x)}{a}-\frac{15 c^4 \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )}{16 a}\\ \end{align*}

Mathematica [C]  time = 0.209166, size = 191, normalized size = 1. \[ \frac{c^4 \left (-336 a^2 x^2 \text{Hypergeometric2F1}\left (-\frac{5}{2},-\frac{5}{2},-\frac{3}{2},a^2 x^2\right )-\frac{5 \left (16 a^7 x^7 \left (a^2 x^2-1\right )^4 \text{Hypergeometric2F1}\left (3,\frac{7}{2},\frac{9}{2},1-a^2 x^2\right )+16 a^8 x^8-231 a^7 x^7-64 a^6 x^6+413 a^5 x^5+96 a^4 x^4-238 a^3 x^3-64 a^2 x^2-105 a^7 x^7 \sqrt{1-a^2 x^2} \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )+56 a x+16\right )}{\sqrt{1-a^2 x^2}}\right )}{560 a^8 x^7} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcTanh[a*x])*(c - c/(a^2*x^2))^4,x]

[Out]

(c^4*(-336*a^2*x^2*Hypergeometric2F1[-5/2, -5/2, -3/2, a^2*x^2] - (5*(16 + 56*a*x - 64*a^2*x^2 - 238*a^3*x^3 +
 96*a^4*x^4 + 413*a^5*x^5 - 64*a^6*x^6 - 231*a^7*x^7 + 16*a^8*x^8 - 105*a^7*x^7*Sqrt[1 - a^2*x^2]*ArcTanh[Sqrt
[1 - a^2*x^2]] + 16*a^7*x^7*(-1 + a^2*x^2)^4*Hypergeometric2F1[3, 7/2, 9/2, 1 - a^2*x^2]))/Sqrt[1 - a^2*x^2]))
/(560*a^8*x^7)

________________________________________________________________________________________

Maple [A]  time = 0.089, size = 273, normalized size = 1.4 \begin{align*} -{\frac{37\,{c}^{4}}{16\,{x}^{2}{a}^{3}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}-{\frac{218\,{c}^{4}}{35\,{a}^{2}x}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}-{{c}^{4}a{x}^{2}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}-3\,{\frac{{c}^{4}}{\sqrt{{a}^{2}}}\arctan \left ({\frac{\sqrt{{a}^{2}}x}{\sqrt{-{a}^{2}{x}^{2}+1}}} \right ) }-{\frac{{c}^{4}}{2\,{a}^{7}{x}^{6}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}-{\frac{{c}^{4}}{35\,{a}^{6}{x}^{5}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}+{\frac{15\,{c}^{4}}{8\,{a}^{5}{x}^{4}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}+{\frac{68\,{c}^{4}}{35\,{a}^{4}{x}^{3}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}+{\frac{156\,{c}^{4}x}{35}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}-{\frac{15\,{c}^{4}}{16\,a}{\it Artanh} \left ({\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}} \right ) }+{\frac{31\,{c}^{4}}{16\,a}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}-{\frac{{c}^{4}}{7\,{a}^{8}{x}^{7}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^4,x)

[Out]

-37/16*c^4/a^3/x^2/(-a^2*x^2+1)^(1/2)-218/35*c^4/a^2/x/(-a^2*x^2+1)^(1/2)-c^4*a*x^2/(-a^2*x^2+1)^(1/2)-3*c^4/(
a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2))-1/2*c^4/a^7/x^6/(-a^2*x^2+1)^(1/2)-1/35*c^4/a^6/x^5/(-a^2*
x^2+1)^(1/2)+15/8*c^4/a^5/x^4/(-a^2*x^2+1)^(1/2)+68/35*c^4/a^4/x^3/(-a^2*x^2+1)^(1/2)+156/35*c^4*x/(-a^2*x^2+1
)^(1/2)-15/16*c^4/a*arctanh(1/(-a^2*x^2+1)^(1/2))+31/16*c^4/a/(-a^2*x^2+1)^(1/2)-1/7*c^4/a^8/x^7/(-a^2*x^2+1)^
(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.53111, size = 1022, normalized size = 5.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^4,x, algorithm="maxima")

[Out]

-a^3*c^4*(x^2/(sqrt(-a^2*x^2 + 1)*a^2) - 2/(sqrt(-a^2*x^2 + 1)*a^4)) + 3*a^2*c^4*(x/(sqrt(-a^2*x^2 + 1)*a^2) -
 arcsin(a^2*x/sqrt(a^2))/(sqrt(a^2)*a^2)) - 11*c^4*x/sqrt(-a^2*x^2 + 1) - 6*c^4*(1/sqrt(-a^2*x^2 + 1) - log(2*
sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)))/a + 14*(2*a^2*x/sqrt(-a^2*x^2 + 1) - 1/(sqrt(-a^2*x^2 + 1)*x))*c^4/a^2
- c^4/(sqrt(-a^2*x^2 + 1)*a) - 7*(3*a^2*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - 3*a^2/sqrt(-a^2*x^2 + 1)
 + 1/(sqrt(-a^2*x^2 + 1)*x^2))*c^4/a^3 - 2*(8*a^4*x/sqrt(-a^2*x^2 + 1) - 4*a^2/(sqrt(-a^2*x^2 + 1)*x) - 1/(sqr
t(-a^2*x^2 + 1)*x^3))*c^4/a^4 + 11/8*(15*a^4*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - 15*a^4/sqrt(-a^2*x^
2 + 1) + 5*a^2/(sqrt(-a^2*x^2 + 1)*x^2) + 2/(sqrt(-a^2*x^2 + 1)*x^4))*c^4/a^5 - 1/5*(16*a^6*x/sqrt(-a^2*x^2 +
1) - 8*a^4/(sqrt(-a^2*x^2 + 1)*x) - 2*a^2/(sqrt(-a^2*x^2 + 1)*x^3) - 1/(sqrt(-a^2*x^2 + 1)*x^5))*c^4/a^6 - 1/1
6*(105*a^6*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - 105*a^6/sqrt(-a^2*x^2 + 1) + 35*a^4/(sqrt(-a^2*x^2 +
1)*x^2) + 14*a^2/(sqrt(-a^2*x^2 + 1)*x^4) + 8/(sqrt(-a^2*x^2 + 1)*x^6))*c^4/a^7 + 1/35*(128*a^8*x/sqrt(-a^2*x^
2 + 1) - 64*a^6/(sqrt(-a^2*x^2 + 1)*x) - 16*a^4/(sqrt(-a^2*x^2 + 1)*x^3) - 8*a^2/(sqrt(-a^2*x^2 + 1)*x^5) - 5/
(sqrt(-a^2*x^2 + 1)*x^7))*c^4/a^8

________________________________________________________________________________________

Fricas [A]  time = 2.22048, size = 398, normalized size = 2.08 \begin{align*} \frac{3360 \, a^{7} c^{4} x^{7} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{a x}\right ) + 525 \, a^{7} c^{4} x^{7} \log \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{x}\right ) + 560 \, a^{7} c^{4} x^{7} +{\left (560 \, a^{7} c^{4} x^{7} - 2496 \, a^{6} c^{4} x^{6} - 525 \, a^{5} c^{4} x^{5} + 992 \, a^{4} c^{4} x^{4} + 770 \, a^{3} c^{4} x^{3} - 96 \, a^{2} c^{4} x^{2} - 280 \, a c^{4} x - 80 \, c^{4}\right )} \sqrt{-a^{2} x^{2} + 1}}{560 \, a^{8} x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^4,x, algorithm="fricas")

[Out]

1/560*(3360*a^7*c^4*x^7*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + 525*a^7*c^4*x^7*log((sqrt(-a^2*x^2 + 1) - 1)/
x) + 560*a^7*c^4*x^7 + (560*a^7*c^4*x^7 - 2496*a^6*c^4*x^6 - 525*a^5*c^4*x^5 + 992*a^4*c^4*x^4 + 770*a^3*c^4*x
^3 - 96*a^2*c^4*x^2 - 280*a*c^4*x - 80*c^4)*sqrt(-a^2*x^2 + 1))/(a^8*x^7)

________________________________________________________________________________________

Sympy [A]  time = 40.3596, size = 935, normalized size = 4.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(c-c/a**2/x**2)**4,x)

[Out]

-a*c**4*Piecewise((x**2/2, Eq(a**2, 0)), (-sqrt(-a**2*x**2 + 1)/a**2, True)) - 3*c**4*Piecewise((sqrt(a**(-2))
*asin(x*sqrt(a**2)), a**2 > 0), (sqrt(-1/a**2)*asinh(x*sqrt(-a**2)), a**2 < 0)) + 8*c**4*Piecewise((-I*sqrt(a*
*2*x**2 - 1)/x, Abs(a**2*x**2) > 1), (-sqrt(-a**2*x**2 + 1)/x, True))/a**2 + 6*c**4*Piecewise((-a**2*acosh(1/(
a*x))/2 - a*sqrt(-1 + 1/(a**2*x**2))/(2*x), 1/Abs(a**2*x**2) > 1), (I*a**2*asin(1/(a*x))/2 - I*a/(2*x*sqrt(1 -
 1/(a**2*x**2))) + I/(2*a*x**3*sqrt(1 - 1/(a**2*x**2))), True))/a**3 - 6*c**4*Piecewise((-2*I*a**2*sqrt(a**2*x
**2 - 1)/(3*x) - I*sqrt(a**2*x**2 - 1)/(3*x**3), Abs(a**2*x**2) > 1), (-2*a**2*sqrt(-a**2*x**2 + 1)/(3*x) - sq
rt(-a**2*x**2 + 1)/(3*x**3), True))/a**4 - 8*c**4*Piecewise((-3*a**4*acosh(1/(a*x))/8 + 3*a**3/(8*x*sqrt(-1 +
1/(a**2*x**2))) - a/(8*x**3*sqrt(-1 + 1/(a**2*x**2))) - 1/(4*a*x**5*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2
) > 1), (3*I*a**4*asin(1/(a*x))/8 - 3*I*a**3/(8*x*sqrt(1 - 1/(a**2*x**2))) + I*a/(8*x**3*sqrt(1 - 1/(a**2*x**2
))) + I/(4*a*x**5*sqrt(1 - 1/(a**2*x**2))), True))/a**5 + 3*c**4*Piecewise((-5*a**6*acosh(1/(a*x))/16 + 5*a**5
/(16*x*sqrt(-1 + 1/(a**2*x**2))) - 5*a**3/(48*x**3*sqrt(-1 + 1/(a**2*x**2))) - a/(24*x**5*sqrt(-1 + 1/(a**2*x*
*2))) - 1/(6*a*x**7*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (5*I*a**6*asin(1/(a*x))/16 - 5*I*a**5/(1
6*x*sqrt(1 - 1/(a**2*x**2))) + 5*I*a**3/(48*x**3*sqrt(1 - 1/(a**2*x**2))) + I*a/(24*x**5*sqrt(1 - 1/(a**2*x**2
))) + I/(6*a*x**7*sqrt(1 - 1/(a**2*x**2))), True))/a**7 + c**4*Piecewise((-16*a**7*sqrt(-1 + 1/(a**2*x**2))/35
 - 8*a**5*sqrt(-1 + 1/(a**2*x**2))/(35*x**2) - 6*a**3*sqrt(-1 + 1/(a**2*x**2))/(35*x**4) - a*sqrt(-1 + 1/(a**2
*x**2))/(7*x**6), 1/Abs(a**2*x**2) > 1), (-16*I*a**7*sqrt(1 - 1/(a**2*x**2))/35 - 8*I*a**5*sqrt(1 - 1/(a**2*x*
*2))/(35*x**2) - 6*I*a**3*sqrt(1 - 1/(a**2*x**2))/(35*x**4) - I*a*sqrt(1 - 1/(a**2*x**2))/(7*x**6), True))/a**
8

________________________________________________________________________________________

Giac [B]  time = 1.23801, size = 682, normalized size = 3.57 \begin{align*} \frac{{\left (5 \, c^{4} + \frac{35 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )} c^{4}}{a^{2} x} + \frac{49 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{2} c^{4}}{a^{4} x^{2}} - \frac{245 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{3} c^{4}}{a^{6} x^{3}} - \frac{875 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{4} c^{4}}{a^{8} x^{4}} + \frac{455 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{5} c^{4}}{a^{10} x^{5}} + \frac{9065 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{6} c^{4}}{a^{12} x^{6}}\right )} a^{14} x^{7}}{4480 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{7}{\left | a \right |}} - \frac{3 \, c^{4} \arcsin \left (a x\right ) \mathrm{sgn}\left (a\right )}{{\left | a \right |}} - \frac{15 \, c^{4} \log \left (\frac{{\left | -2 \, \sqrt{-a^{2} x^{2} + 1}{\left | a \right |} - 2 \, a \right |}}{2 \, a^{2}{\left | x \right |}}\right )}{16 \,{\left | a \right |}} + \frac{\sqrt{-a^{2} x^{2} + 1} c^{4}}{a} - \frac{\frac{9065 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )} a^{4} c^{4}}{x} + \frac{455 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{2} a^{2} c^{4}}{x^{2}} - \frac{875 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{3} c^{4}}{x^{3}} - \frac{245 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{4} c^{4}}{a^{2} x^{4}} + \frac{49 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{5} c^{4}}{a^{4} x^{5}} + \frac{35 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{6} c^{4}}{a^{6} x^{6}} + \frac{5 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{7} c^{4}}{a^{8} x^{7}}}{4480 \, a^{6}{\left | a \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^4,x, algorithm="giac")

[Out]

1/4480*(5*c^4 + 35*(sqrt(-a^2*x^2 + 1)*abs(a) + a)*c^4/(a^2*x) + 49*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*c^4/(a^4
*x^2) - 245*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^3*c^4/(a^6*x^3) - 875*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*c^4/(a^8*x
^4) + 455*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^5*c^4/(a^10*x^5) + 9065*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^6*c^4/(a^12*
x^6))*a^14*x^7/((sqrt(-a^2*x^2 + 1)*abs(a) + a)^7*abs(a)) - 3*c^4*arcsin(a*x)*sgn(a)/abs(a) - 15/16*c^4*log(1/
2*abs(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*abs(x)))/abs(a) + sqrt(-a^2*x^2 + 1)*c^4/a - 1/4480*(9065*(sqrt
(-a^2*x^2 + 1)*abs(a) + a)*a^4*c^4/x + 455*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*a^2*c^4/x^2 - 875*(sqrt(-a^2*x^2
+ 1)*abs(a) + a)^3*c^4/x^3 - 245*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*c^4/(a^2*x^4) + 49*(sqrt(-a^2*x^2 + 1)*abs(
a) + a)^5*c^4/(a^4*x^5) + 35*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^6*c^4/(a^6*x^6) + 5*(sqrt(-a^2*x^2 + 1)*abs(a) +
a)^7*c^4/(a^8*x^7))/(a^6*abs(a))