3.570 \(\int \frac{e^{\tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^3} \, dx\)

Optimal. Leaf size=84 \[ \frac{4 a (a x+1)^{3/2} \sqrt{c-\frac{c}{a x}}}{15 x \sqrt{1-a x}}-\frac{2 (a x+1)^{3/2} \sqrt{c-\frac{c}{a x}}}{5 x^2 \sqrt{1-a x}} \]

[Out]

(-2*Sqrt[c - c/(a*x)]*(1 + a*x)^(3/2))/(5*x^2*Sqrt[1 - a*x]) + (4*a*Sqrt[c - c/(a*x)]*(1 + a*x)^(3/2))/(15*x*S
qrt[1 - a*x])

________________________________________________________________________________________

Rubi [A]  time = 0.21596, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {6134, 6128, 848, 45, 37} \[ \frac{4 a (a x+1)^{3/2} \sqrt{c-\frac{c}{a x}}}{15 x \sqrt{1-a x}}-\frac{2 (a x+1)^{3/2} \sqrt{c-\frac{c}{a x}}}{5 x^2 \sqrt{1-a x}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*Sqrt[c - c/(a*x)])/x^3,x]

[Out]

(-2*Sqrt[c - c/(a*x)]*(1 + a*x)^(3/2))/(5*x^2*Sqrt[1 - a*x]) + (4*a*Sqrt[c - c/(a*x)]*(1 + a*x)^(3/2))/(15*x*S
qrt[1 - a*x])

Rule 6134

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(x^p*(c + d/x)^p)/(1 + (c*
x)/d)^p, Int[(u*(1 + (c*x)/d)^p*E^(n*ArcTanh[a*x]))/x^p, x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rule 848

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)
^(m + p)*(f + g*x)^n*(a/d + (c*x)/e)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && EqQ[c
*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && EqQ[m + p, 0]))

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^3} \, dx &=\frac{\left (\sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{e^{\tanh ^{-1}(a x)} \sqrt{1-a x}}{x^{7/2}} \, dx}{\sqrt{1-a x}}\\ &=\frac{\left (\sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{\sqrt{1-a^2 x^2}}{x^{7/2} \sqrt{1-a x}} \, dx}{\sqrt{1-a x}}\\ &=\frac{\left (\sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{\sqrt{1+a x}}{x^{7/2}} \, dx}{\sqrt{1-a x}}\\ &=-\frac{2 \sqrt{c-\frac{c}{a x}} (1+a x)^{3/2}}{5 x^2 \sqrt{1-a x}}-\frac{\left (2 a \sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{\sqrt{1+a x}}{x^{5/2}} \, dx}{5 \sqrt{1-a x}}\\ &=-\frac{2 \sqrt{c-\frac{c}{a x}} (1+a x)^{3/2}}{5 x^2 \sqrt{1-a x}}+\frac{4 a \sqrt{c-\frac{c}{a x}} (1+a x)^{3/2}}{15 x \sqrt{1-a x}}\\ \end{align*}

Mathematica [A]  time = 0.0275659, size = 47, normalized size = 0.56 \[ \frac{2 (a x+1)^{3/2} (2 a x-3) \sqrt{c-\frac{c}{a x}}}{15 x^2 \sqrt{1-a x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcTanh[a*x]*Sqrt[c - c/(a*x)])/x^3,x]

[Out]

(2*Sqrt[c - c/(a*x)]*(1 + a*x)^(3/2)*(-3 + 2*a*x))/(15*x^2*Sqrt[1 - a*x])

________________________________________________________________________________________

Maple [A]  time = 0.08, size = 46, normalized size = 0.6 \begin{align*}{\frac{2\, \left ( ax+1 \right ) ^{2} \left ( 2\,ax-3 \right ) }{15\,{x}^{2}}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a/x)^(1/2)/x^3,x)

[Out]

2/15*(a*x+1)^2*(2*a*x-3)*(c*(a*x-1)/a/x)^(1/2)/x^2/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )} \sqrt{c - \frac{c}{a x}}}{\sqrt{-a^{2} x^{2} + 1} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a/x)^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate((a*x + 1)*sqrt(c - c/(a*x))/(sqrt(-a^2*x^2 + 1)*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 1.84116, size = 116, normalized size = 1.38 \begin{align*} -\frac{2 \,{\left (2 \, a^{2} x^{2} - a x - 3\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{\frac{a c x - c}{a x}}}{15 \,{\left (a x^{3} - x^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a/x)^(1/2)/x^3,x, algorithm="fricas")

[Out]

-2/15*(2*a^2*x^2 - a*x - 3)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x))/(a*x^3 - x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (-1 + \frac{1}{a x}\right )} \left (a x + 1\right )}{x^{3} \sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(c-c/a/x)**(1/2)/x**3,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))*(a*x + 1)/(x**3*sqrt(-(a*x - 1)*(a*x + 1))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )} \sqrt{c - \frac{c}{a x}}}{\sqrt{-a^{2} x^{2} + 1} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a/x)^(1/2)/x^3,x, algorithm="giac")

[Out]

integrate((a*x + 1)*sqrt(c - c/(a*x))/(sqrt(-a^2*x^2 + 1)*x^3), x)