3.558 \(\int e^{-3 \tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} \, dx\)

Optimal. Leaf size=123 \[ \frac{x \sqrt{a x+1} \sqrt{c-\frac{c}{a x}}}{\sqrt{1-a x}}+\frac{8 x \sqrt{c-\frac{c}{a x}}}{\sqrt{1-a x} \sqrt{a x+1}}-\frac{7 \sqrt{x} \sqrt{c-\frac{c}{a x}} \sinh ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a} \sqrt{1-a x}} \]

[Out]

(8*Sqrt[c - c/(a*x)]*x)/(Sqrt[1 - a*x]*Sqrt[1 + a*x]) + (Sqrt[c - c/(a*x)]*x*Sqrt[1 + a*x])/Sqrt[1 - a*x] - (7
*Sqrt[c - c/(a*x)]*Sqrt[x]*ArcSinh[Sqrt[a]*Sqrt[x]])/(Sqrt[a]*Sqrt[1 - a*x])

________________________________________________________________________________________

Rubi [A]  time = 0.158976, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {6134, 6129, 89, 80, 54, 215} \[ \frac{x \sqrt{a x+1} \sqrt{c-\frac{c}{a x}}}{\sqrt{1-a x}}+\frac{8 x \sqrt{c-\frac{c}{a x}}}{\sqrt{1-a x} \sqrt{a x+1}}-\frac{7 \sqrt{x} \sqrt{c-\frac{c}{a x}} \sinh ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a} \sqrt{1-a x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a*x)]/E^(3*ArcTanh[a*x]),x]

[Out]

(8*Sqrt[c - c/(a*x)]*x)/(Sqrt[1 - a*x]*Sqrt[1 + a*x]) + (Sqrt[c - c/(a*x)]*x*Sqrt[1 + a*x])/Sqrt[1 - a*x] - (7
*Sqrt[c - c/(a*x)]*Sqrt[x]*ArcSinh[Sqrt[a]*Sqrt[x]])/(Sqrt[a]*Sqrt[1 - a*x])

Rule 6134

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(x^p*(c + d/x)^p)/(1 + (c*
x)/d)^p, Int[(u*(1 + (c*x)/d)^p*E^(n*ArcTanh[a*x]))/x^p, x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int e^{-3 \tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} \, dx &=\frac{\left (\sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{e^{-3 \tanh ^{-1}(a x)} \sqrt{1-a x}}{\sqrt{x}} \, dx}{\sqrt{1-a x}}\\ &=\frac{\left (\sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{(1-a x)^2}{\sqrt{x} (1+a x)^{3/2}} \, dx}{\sqrt{1-a x}}\\ &=\frac{8 \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-a x} \sqrt{1+a x}}-\frac{\left (2 \sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{\frac{3 a^2}{2}-\frac{a^3 x}{2}}{\sqrt{x} \sqrt{1+a x}} \, dx}{a^2 \sqrt{1-a x}}\\ &=\frac{8 \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-a x} \sqrt{1+a x}}+\frac{\sqrt{c-\frac{c}{a x}} x \sqrt{1+a x}}{\sqrt{1-a x}}-\frac{\left (7 \sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+a x}} \, dx}{2 \sqrt{1-a x}}\\ &=\frac{8 \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-a x} \sqrt{1+a x}}+\frac{\sqrt{c-\frac{c}{a x}} x \sqrt{1+a x}}{\sqrt{1-a x}}-\frac{\left (7 \sqrt{c-\frac{c}{a x}} \sqrt{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+a x^2}} \, dx,x,\sqrt{x}\right )}{\sqrt{1-a x}}\\ &=\frac{8 \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-a x} \sqrt{1+a x}}+\frac{\sqrt{c-\frac{c}{a x}} x \sqrt{1+a x}}{\sqrt{1-a x}}-\frac{7 \sqrt{c-\frac{c}{a x}} \sqrt{x} \sinh ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a} \sqrt{1-a x}}\\ \end{align*}

Mathematica [A]  time = 0.0509674, size = 80, normalized size = 0.65 \[ \frac{\sqrt{x} \sqrt{c-\frac{c}{a x}} \left (\sqrt{a} \sqrt{x} (a x+9)-7 \sqrt{a x+1} \sinh ^{-1}\left (\sqrt{a} \sqrt{x}\right )\right )}{\sqrt{a} \sqrt{1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - c/(a*x)]/E^(3*ArcTanh[a*x]),x]

[Out]

(Sqrt[c - c/(a*x)]*Sqrt[x]*(Sqrt[a]*Sqrt[x]*(9 + a*x) - 7*Sqrt[1 + a*x]*ArcSinh[Sqrt[a]*Sqrt[x]]))/(Sqrt[a]*Sq
rt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.139, size = 140, normalized size = 1.1 \begin{align*} -{\frac{x}{ \left ( 2\,ax+2 \right ) \left ( ax-1 \right ) }\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( 2\,{a}^{3/2}x\sqrt{- \left ( ax+1 \right ) x}+7\,\arctan \left ( 1/2\,{\frac{2\,ax+1}{\sqrt{a}\sqrt{- \left ( ax+1 \right ) x}}} \right ) xa+18\,\sqrt{a}\sqrt{- \left ( ax+1 \right ) x}+7\,\arctan \left ( 1/2\,{\frac{2\,ax+1}{\sqrt{a}\sqrt{- \left ( ax+1 \right ) x}}} \right ) \right ) \sqrt{-{a}^{2}{x}^{2}+1}{\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{- \left ( ax+1 \right ) x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x)

[Out]

-1/2*(c*(a*x-1)/a/x)^(1/2)*x*(2*a^(3/2)*x*(-(a*x+1)*x)^(1/2)+7*arctan(1/2/a^(1/2)*(2*a*x+1)/(-(a*x+1)*x)^(1/2)
)*x*a+18*a^(1/2)*(-(a*x+1)*x)^(1/2)+7*arctan(1/2/a^(1/2)*(2*a*x+1)/(-(a*x+1)*x)^(1/2)))*(-a^2*x^2+1)^(1/2)/a^(
1/2)/(a*x+1)/(-(a*x+1)*x)^(1/2)/(a*x-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} \sqrt{c - \frac{c}{a x}}}{{\left (a x + 1\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))/(a*x + 1)^3, x)

________________________________________________________________________________________

Fricas [A]  time = 2.25012, size = 586, normalized size = 4.76 \begin{align*} \left [\frac{7 \,{\left (a^{2} x^{2} - 1\right )} \sqrt{-c} \log \left (-\frac{8 \, a^{3} c x^{3} - 7 \, a c x - 4 \,{\left (2 \, a^{2} x^{2} + a x\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{-c} \sqrt{\frac{a c x - c}{a x}} - c}{a x - 1}\right ) - 4 \,{\left (a^{2} x^{2} + 9 \, a x\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{\frac{a c x - c}{a x}}}{4 \,{\left (a^{3} x^{2} - a\right )}}, \frac{7 \,{\left (a^{2} x^{2} - 1\right )} \sqrt{c} \arctan \left (\frac{2 \, \sqrt{-a^{2} x^{2} + 1} a \sqrt{c} x \sqrt{\frac{a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) - 2 \,{\left (a^{2} x^{2} + 9 \, a x\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{\frac{a c x - c}{a x}}}{2 \,{\left (a^{3} x^{2} - a\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(7*(a^2*x^2 - 1)*sqrt(-c)*log(-(8*a^3*c*x^3 - 7*a*c*x - 4*(2*a^2*x^2 + a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*s
qrt((a*c*x - c)/(a*x)) - c)/(a*x - 1)) - 4*(a^2*x^2 + 9*a*x)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^3*
x^2 - a), 1/2*(7*(a^2*x^2 - 1)*sqrt(c)*arctan(2*sqrt(-a^2*x^2 + 1)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x))/(2*a^2*
c*x^2 - a*c*x - c)) - 2*(a^2*x^2 + 9*a*x)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^3*x^2 - a)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (-1 + \frac{1}{a x}\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}{\left (a x + 1\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)/(a*x+1)**3*(-a**2*x**2+1)**(3/2),x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))*(-(a*x - 1)*(a*x + 1))**(3/2)/(a*x + 1)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} \sqrt{c - \frac{c}{a x}}}{{\left (a x + 1\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="giac")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))/(a*x + 1)^3, x)