3.440 \(\int e^{n \tanh ^{-1}(a x)} (c-a c x)^3 \, dx\)

Optimal. Leaf size=68 \[ -\frac{c^3 2^{\frac{n}{2}+1} (1-a x)^{4-\frac{n}{2}} \text{Hypergeometric2F1}\left (4-\frac{n}{2},-\frac{n}{2},5-\frac{n}{2},\frac{1}{2} (1-a x)\right )}{a (8-n)} \]

[Out]

-((2^(1 + n/2)*c^3*(1 - a*x)^(4 - n/2)*Hypergeometric2F1[4 - n/2, -n/2, 5 - n/2, (1 - a*x)/2])/(a*(8 - n)))

________________________________________________________________________________________

Rubi [A]  time = 0.0469197, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {6129, 69} \[ -\frac{c^3 2^{\frac{n}{2}+1} (1-a x)^{4-\frac{n}{2}} \, _2F_1\left (4-\frac{n}{2},-\frac{n}{2};5-\frac{n}{2};\frac{1}{2} (1-a x)\right )}{a (8-n)} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTanh[a*x])*(c - a*c*x)^3,x]

[Out]

-((2^(1 + n/2)*c^3*(1 - a*x)^(4 - n/2)*Hypergeometric2F1[4 - n/2, -n/2, 5 - n/2, (1 - a*x)/2])/(a*(8 - n)))

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int e^{n \tanh ^{-1}(a x)} (c-a c x)^3 \, dx &=c^3 \int (1-a x)^{3-\frac{n}{2}} (1+a x)^{n/2} \, dx\\ &=-\frac{2^{1+\frac{n}{2}} c^3 (1-a x)^{4-\frac{n}{2}} \, _2F_1\left (4-\frac{n}{2},-\frac{n}{2};5-\frac{n}{2};\frac{1}{2} (1-a x)\right )}{a (8-n)}\\ \end{align*}

Mathematica [A]  time = 0.0196658, size = 65, normalized size = 0.96 \[ \frac{c^3 2^{\frac{n}{2}+1} (1-a x)^{4-\frac{n}{2}} \text{Hypergeometric2F1}\left (4-\frac{n}{2},-\frac{n}{2},5-\frac{n}{2},\frac{1}{2} (1-a x)\right )}{a (n-8)} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTanh[a*x])*(c - a*c*x)^3,x]

[Out]

(2^(1 + n/2)*c^3*(1 - a*x)^(4 - n/2)*Hypergeometric2F1[4 - n/2, -n/2, 5 - n/2, (1 - a*x)/2])/(a*(-8 + n))

________________________________________________________________________________________

Maple [F]  time = 0.148, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{n{\it Artanh} \left ( ax \right ) }} \left ( -acx+c \right ) ^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))*(-a*c*x+c)^3,x)

[Out]

int(exp(n*arctanh(a*x))*(-a*c*x+c)^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int{\left (a c x - c\right )}^{3} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*(-a*c*x+c)^3,x, algorithm="maxima")

[Out]

-integrate((a*c*x - c)^3*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (a^{3} c^{3} x^{3} - 3 \, a^{2} c^{3} x^{2} + 3 \, a c^{3} x - c^{3}\right )} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*(-a*c*x+c)^3,x, algorithm="fricas")

[Out]

integral(-(a^3*c^3*x^3 - 3*a^2*c^3*x^2 + 3*a*c^3*x - c^3)*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - c^{3} \left (\int 3 a x e^{n \operatorname{atanh}{\left (a x \right )}}\, dx + \int - 3 a^{2} x^{2} e^{n \operatorname{atanh}{\left (a x \right )}}\, dx + \int a^{3} x^{3} e^{n \operatorname{atanh}{\left (a x \right )}}\, dx + \int - e^{n \operatorname{atanh}{\left (a x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))*(-a*c*x+c)**3,x)

[Out]

-c**3*(Integral(3*a*x*exp(n*atanh(a*x)), x) + Integral(-3*a**2*x**2*exp(n*atanh(a*x)), x) + Integral(a**3*x**3
*exp(n*atanh(a*x)), x) + Integral(-exp(n*atanh(a*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -{\left (a c x - c\right )}^{3} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*(-a*c*x+c)^3,x, algorithm="giac")

[Out]

integrate(-(a*c*x - c)^3*((a*x + 1)/(a*x - 1))^(1/2*n), x)