3.416 \(\int \frac{e^{-\tanh ^{-1}(a x)} \sqrt{c-a c x}}{x^2} \, dx\)

Optimal. Leaf size=72 \[ 3 a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-a^2 x^2}}{\sqrt{c-a c x}}\right )-\frac{c \sqrt{1-a^2 x^2}}{x \sqrt{c-a c x}} \]

[Out]

-((c*Sqrt[1 - a^2*x^2])/(x*Sqrt[c - a*c*x])) + 3*a*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - a^2*x^2])/Sqrt[c - a*c*x]
]

________________________________________________________________________________________

Rubi [A]  time = 0.160621, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {6128, 879, 875, 208} \[ 3 a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-a^2 x^2}}{\sqrt{c-a c x}}\right )-\frac{c \sqrt{1-a^2 x^2}}{x \sqrt{c-a c x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a*c*x]/(E^ArcTanh[a*x]*x^2),x]

[Out]

-((c*Sqrt[1 - a^2*x^2])/(x*Sqrt[c - a*c*x])) + 3*a*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - a^2*x^2])/Sqrt[c - a*c*x]
]

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rule 879

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e^2*(e*f
 - d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*(a + c*x^2)^(p + 1))/(c*g*(n + 1)*(e*f + d*g)), x] - Dist[(e*(e*f*
(p + 1) - d*g*(2*n + p + 3)))/(g*(n + 1)*(e*f + d*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + c*x^2)^p,
x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] &&
 EqQ[m + p - 1, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 875

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e^2, Subst[I
nt[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{-\tanh ^{-1}(a x)} \sqrt{c-a c x}}{x^2} \, dx &=\frac{\int \frac{(c-a c x)^{3/2}}{x^2 \sqrt{1-a^2 x^2}} \, dx}{c}\\ &=-\frac{c \sqrt{1-a^2 x^2}}{x \sqrt{c-a c x}}-\frac{1}{2} (3 a) \int \frac{\sqrt{c-a c x}}{x \sqrt{1-a^2 x^2}} \, dx\\ &=-\frac{c \sqrt{1-a^2 x^2}}{x \sqrt{c-a c x}}-\left (3 a^3 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a^2 c+a^2 c^2 x^2} \, dx,x,\frac{\sqrt{1-a^2 x^2}}{\sqrt{c-a c x}}\right )\\ &=-\frac{c \sqrt{1-a^2 x^2}}{x \sqrt{c-a c x}}+3 a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-a^2 x^2}}{\sqrt{c-a c x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0303993, size = 52, normalized size = 0.72 \[ \frac{\sqrt{1-a x} \left (3 a c \tanh ^{-1}\left (\sqrt{a x+1}\right )-\frac{c \sqrt{a x+1}}{x}\right )}{\sqrt{c-a c x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - a*c*x]/(E^ArcTanh[a*x]*x^2),x]

[Out]

(Sqrt[1 - a*x]*(-((c*Sqrt[1 + a*x])/x) + 3*a*c*ArcTanh[Sqrt[1 + a*x]]))/Sqrt[c - a*c*x]

________________________________________________________________________________________

Maple [A]  time = 0.1, size = 79, normalized size = 1.1 \begin{align*}{\frac{1}{ \left ( ax-1 \right ) x}\sqrt{-c \left ( ax-1 \right ) }\sqrt{-{a}^{2}{x}^{2}+1} \left ( -3\,{\it Artanh} \left ({\frac{\sqrt{c \left ( ax+1 \right ) }}{\sqrt{c}}} \right ) xac+\sqrt{c \left ( ax+1 \right ) }\sqrt{c} \right ){\frac{1}{\sqrt{c \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x)

[Out]

(-c*(a*x-1))^(1/2)*(-a^2*x^2+1)^(1/2)*(-3*arctanh((c*(a*x+1))^(1/2)/c^(1/2))*x*a*c+(c*(a*x+1))^(1/2)*c^(1/2))/
(a*x-1)/(c*(a*x+1))^(1/2)/x/c^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1} \sqrt{-a c x + c}}{{\left (a x + 1\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)/((a*x + 1)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.86449, size = 446, normalized size = 6.19 \begin{align*} \left [\frac{3 \,{\left (a^{2} x^{2} - a x\right )} \sqrt{c} \log \left (-\frac{a^{2} c x^{2} + a c x - 2 \, \sqrt{-a^{2} x^{2} + 1} \sqrt{-a c x + c} \sqrt{c} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt{-a^{2} x^{2} + 1} \sqrt{-a c x + c}}{2 \,{\left (a x^{2} - x\right )}}, \frac{3 \,{\left (a^{2} x^{2} - a x\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1} \sqrt{-a c x + c} \sqrt{-c}}{a^{2} c x^{2} - c}\right ) + \sqrt{-a^{2} x^{2} + 1} \sqrt{-a c x + c}}{a x^{2} - x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*(a^2*x^2 - a*x)*sqrt(c)*log(-(a^2*c*x^2 + a*c*x - 2*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(c) - 2*c)
/(a*x^2 - x)) + 2*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c))/(a*x^2 - x), (3*(a^2*x^2 - a*x)*sqrt(-c)*arctan(sqrt(-a
^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(-c)/(a^2*c*x^2 - c)) + sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c))/(a*x^2 - x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (a x - 1\right )} \sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}{x^{2} \left (a x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(1/2)/(a*x+1)*(-a**2*x**2+1)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-c*(a*x - 1))*sqrt(-(a*x - 1)*(a*x + 1))/(x**2*(a*x + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 1.2062, size = 131, normalized size = 1.82 \begin{align*} -\frac{{\left (a c^{2}{\left (\frac{3 \, \arctan \left (\frac{\sqrt{a c x + c}}{\sqrt{-c}}\right )}{\sqrt{-c}} + \frac{\sqrt{a c x + c}}{a c x}\right )} - \frac{3 \, a c^{\frac{5}{2}} \arctan \left (\frac{\sqrt{2} \sqrt{c}}{\sqrt{-c}}\right ) + \sqrt{2} a \sqrt{-c} c^{2}}{\sqrt{-c} \sqrt{c}}\right )}{\left | c \right |}}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="giac")

[Out]

-(a*c^2*(3*arctan(sqrt(a*c*x + c)/sqrt(-c))/sqrt(-c) + sqrt(a*c*x + c)/(a*c*x)) - (3*a*c^(5/2)*arctan(sqrt(2)*
sqrt(c)/sqrt(-c)) + sqrt(2)*a*sqrt(-c)*c^2)/(sqrt(-c)*sqrt(c)))*abs(c)/c^2