3.208 \(\int e^{-2 \tanh ^{-1}(a x)} (c-a c x)^3 \, dx\)

Optimal. Leaf size=73 \[ \frac{c^3 (1-a x)^4}{4 a}+\frac{2 c^3 (1-a x)^3}{3 a}+\frac{2 c^3 (1-a x)^2}{a}+\frac{16 c^3 \log (a x+1)}{a}-8 c^3 x \]

[Out]

-8*c^3*x + (2*c^3*(1 - a*x)^2)/a + (2*c^3*(1 - a*x)^3)/(3*a) + (c^3*(1 - a*x)^4)/(4*a) + (16*c^3*Log[1 + a*x])
/a

________________________________________________________________________________________

Rubi [A]  time = 0.0434497, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {6129, 43} \[ \frac{c^3 (1-a x)^4}{4 a}+\frac{2 c^3 (1-a x)^3}{3 a}+\frac{2 c^3 (1-a x)^2}{a}+\frac{16 c^3 \log (a x+1)}{a}-8 c^3 x \]

Antiderivative was successfully verified.

[In]

Int[(c - a*c*x)^3/E^(2*ArcTanh[a*x]),x]

[Out]

-8*c^3*x + (2*c^3*(1 - a*x)^2)/a + (2*c^3*(1 - a*x)^3)/(3*a) + (c^3*(1 - a*x)^4)/(4*a) + (16*c^3*Log[1 + a*x])
/a

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{-2 \tanh ^{-1}(a x)} (c-a c x)^3 \, dx &=c^3 \int \frac{(1-a x)^4}{1+a x} \, dx\\ &=c^3 \int \left (-8-4 (1-a x)-2 (1-a x)^2-(1-a x)^3+\frac{16}{1+a x}\right ) \, dx\\ &=-8 c^3 x+\frac{2 c^3 (1-a x)^2}{a}+\frac{2 c^3 (1-a x)^3}{3 a}+\frac{c^3 (1-a x)^4}{4 a}+\frac{16 c^3 \log (1+a x)}{a}\\ \end{align*}

Mathematica [A]  time = 0.0166093, size = 48, normalized size = 0.66 \[ \frac{c^3 \left (3 a^4 x^4-20 a^3 x^3+66 a^2 x^2-180 a x+192 \log (a x+1)+35\right )}{12 a} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - a*c*x)^3/E^(2*ArcTanh[a*x]),x]

[Out]

(c^3*(35 - 180*a*x + 66*a^2*x^2 - 20*a^3*x^3 + 3*a^4*x^4 + 192*Log[1 + a*x]))/(12*a)

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 53, normalized size = 0.7 \begin{align*}{\frac{{c}^{3}{x}^{4}{a}^{3}}{4}}-{\frac{5\,{c}^{3}{x}^{3}{a}^{2}}{3}}+{\frac{11\,{c}^{3}{x}^{2}a}{2}}-15\,{c}^{3}x+16\,{\frac{{c}^{3}\ln \left ( ax+1 \right ) }{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^3/(a*x+1)^2*(-a^2*x^2+1),x)

[Out]

1/4*c^3*x^4*a^3-5/3*c^3*x^3*a^2+11/2*c^3*x^2*a-15*c^3*x+16*c^3*ln(a*x+1)/a

________________________________________________________________________________________

Maxima [A]  time = 0.945315, size = 70, normalized size = 0.96 \begin{align*} \frac{1}{4} \, a^{3} c^{3} x^{4} - \frac{5}{3} \, a^{2} c^{3} x^{3} + \frac{11}{2} \, a c^{3} x^{2} - 15 \, c^{3} x + \frac{16 \, c^{3} \log \left (a x + 1\right )}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^3/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="maxima")

[Out]

1/4*a^3*c^3*x^4 - 5/3*a^2*c^3*x^3 + 11/2*a*c^3*x^2 - 15*c^3*x + 16*c^3*log(a*x + 1)/a

________________________________________________________________________________________

Fricas [A]  time = 1.66449, size = 128, normalized size = 1.75 \begin{align*} \frac{3 \, a^{4} c^{3} x^{4} - 20 \, a^{3} c^{3} x^{3} + 66 \, a^{2} c^{3} x^{2} - 180 \, a c^{3} x + 192 \, c^{3} \log \left (a x + 1\right )}{12 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^3/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="fricas")

[Out]

1/12*(3*a^4*c^3*x^4 - 20*a^3*c^3*x^3 + 66*a^2*c^3*x^2 - 180*a*c^3*x + 192*c^3*log(a*x + 1))/a

________________________________________________________________________________________

Sympy [A]  time = 0.334794, size = 56, normalized size = 0.77 \begin{align*} \frac{a^{3} c^{3} x^{4}}{4} - \frac{5 a^{2} c^{3} x^{3}}{3} + \frac{11 a c^{3} x^{2}}{2} - 15 c^{3} x + \frac{16 c^{3} \log{\left (a x + 1 \right )}}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**3/(a*x+1)**2*(-a**2*x**2+1),x)

[Out]

a**3*c**3*x**4/4 - 5*a**2*c**3*x**3/3 + 11*a*c**3*x**2/2 - 15*c**3*x + 16*c**3*log(a*x + 1)/a

________________________________________________________________________________________

Giac [A]  time = 1.18512, size = 111, normalized size = 1.52 \begin{align*} \frac{{\left (3 \, c^{3} - \frac{32 \, c^{3}}{a x + 1} + \frac{144 \, c^{3}}{{\left (a x + 1\right )}^{2}} - \frac{384 \, c^{3}}{{\left (a x + 1\right )}^{3}}\right )}{\left (a x + 1\right )}^{4}}{12 \, a} - \frac{16 \, c^{3} \log \left (\frac{{\left | a x + 1 \right |}}{{\left (a x + 1\right )}^{2}{\left | a \right |}}\right )}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^3/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="giac")

[Out]

1/12*(3*c^3 - 32*c^3/(a*x + 1) + 144*c^3/(a*x + 1)^2 - 384*c^3/(a*x + 1)^3)*(a*x + 1)^4/a - 16*c^3*log(abs(a*x
 + 1)/((a*x + 1)^2*abs(a)))/a