3.183 \(\int \frac{e^{3 \tanh ^{-1}(a x)}}{(c-a c x)^2} \, dx\)

Optimal. Leaf size=32 \[ \frac{\left (1-a^2 x^2\right )^{5/2}}{5 a c^2 (1-a x)^5} \]

[Out]

(1 - a^2*x^2)^(5/2)/(5*a*c^2*(1 - a*x)^5)

________________________________________________________________________________________

Rubi [A]  time = 0.0367227, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {6127, 651} \[ \frac{\left (1-a^2 x^2\right )^{5/2}}{5 a c^2 (1-a x)^5} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])/(c - a*c*x)^2,x]

[Out]

(1 - a^2*x^2)^(5/2)/(5*a*c^2*(1 - a*x)^5)

Rule 6127

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rubi steps

\begin{align*} \int \frac{e^{3 \tanh ^{-1}(a x)}}{(c-a c x)^2} \, dx &=c^3 \int \frac{\left (1-a^2 x^2\right )^{3/2}}{(c-a c x)^5} \, dx\\ &=\frac{\left (1-a^2 x^2\right )^{5/2}}{5 a c^2 (1-a x)^5}\\ \end{align*}

Mathematica [A]  time = 0.0103136, size = 29, normalized size = 0.91 \[ \frac{(a x+1)^{5/2}}{5 a c^2 (1-a x)^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcTanh[a*x])/(c - a*c*x)^2,x]

[Out]

(1 + a*x)^(5/2)/(5*a*c^2*(1 - a*x)^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.031, size = 35, normalized size = 1.1 \begin{align*} -{\frac{ \left ( ax+1 \right ) ^{4}}{ \left ( 5\,ax-5 \right ){c}^{2}a} \left ( -{a}^{2}{x}^{2}+1 \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x)

[Out]

-1/5*(a*x+1)^4/(a*x-1)/c^2/(-a^2*x^2+1)^(3/2)/a

________________________________________________________________________________________

Maxima [B]  time = 1.02232, size = 197, normalized size = 6.16 \begin{align*} \frac{8}{5 \,{\left (\sqrt{-a^{2} x^{2} + 1} a^{3} c^{2} x^{2} - 2 \, \sqrt{-a^{2} x^{2} + 1} a^{2} c^{2} x + \sqrt{-a^{2} x^{2} + 1} a c^{2}\right )}} + \frac{12}{5 \,{\left (\sqrt{-a^{2} x^{2} + 1} a^{2} c^{2} x - \sqrt{-a^{2} x^{2} + 1} a c^{2}\right )}} + \frac{x}{5 \, \sqrt{-a^{2} x^{2} + 1} c^{2}} + \frac{1}{\sqrt{-a^{2} x^{2} + 1} a c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x, algorithm="maxima")

[Out]

8/5/(sqrt(-a^2*x^2 + 1)*a^3*c^2*x^2 - 2*sqrt(-a^2*x^2 + 1)*a^2*c^2*x + sqrt(-a^2*x^2 + 1)*a*c^2) + 12/5/(sqrt(
-a^2*x^2 + 1)*a^2*c^2*x - sqrt(-a^2*x^2 + 1)*a*c^2) + 1/5*x/(sqrt(-a^2*x^2 + 1)*c^2) + 1/(sqrt(-a^2*x^2 + 1)*a
*c^2)

________________________________________________________________________________________

Fricas [B]  time = 1.92553, size = 181, normalized size = 5.66 \begin{align*} \frac{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x -{\left (a^{2} x^{2} + 2 \, a x + 1\right )} \sqrt{-a^{2} x^{2} + 1} - 1}{5 \,{\left (a^{4} c^{2} x^{3} - 3 \, a^{3} c^{2} x^{2} + 3 \, a^{2} c^{2} x - a c^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x, algorithm="fricas")

[Out]

1/5*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - (a^2*x^2 + 2*a*x + 1)*sqrt(-a^2*x^2 + 1) - 1)/(a^4*c^2*x^3 - 3*a^3*c^2*x^2
+ 3*a^2*c^2*x - a*c^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{3 a x}{- a^{4} x^{4} \sqrt{- a^{2} x^{2} + 1} + 2 a^{3} x^{3} \sqrt{- a^{2} x^{2} + 1} - 2 a x \sqrt{- a^{2} x^{2} + 1} + \sqrt{- a^{2} x^{2} + 1}}\, dx + \int \frac{3 a^{2} x^{2}}{- a^{4} x^{4} \sqrt{- a^{2} x^{2} + 1} + 2 a^{3} x^{3} \sqrt{- a^{2} x^{2} + 1} - 2 a x \sqrt{- a^{2} x^{2} + 1} + \sqrt{- a^{2} x^{2} + 1}}\, dx + \int \frac{a^{3} x^{3}}{- a^{4} x^{4} \sqrt{- a^{2} x^{2} + 1} + 2 a^{3} x^{3} \sqrt{- a^{2} x^{2} + 1} - 2 a x \sqrt{- a^{2} x^{2} + 1} + \sqrt{- a^{2} x^{2} + 1}}\, dx + \int \frac{1}{- a^{4} x^{4} \sqrt{- a^{2} x^{2} + 1} + 2 a^{3} x^{3} \sqrt{- a^{2} x^{2} + 1} - 2 a x \sqrt{- a^{2} x^{2} + 1} + \sqrt{- a^{2} x^{2} + 1}}\, dx}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)/(-a*c*x+c)**2,x)

[Out]

(Integral(3*a*x/(-a**4*x**4*sqrt(-a**2*x**2 + 1) + 2*a**3*x**3*sqrt(-a**2*x**2 + 1) - 2*a*x*sqrt(-a**2*x**2 +
1) + sqrt(-a**2*x**2 + 1)), x) + Integral(3*a**2*x**2/(-a**4*x**4*sqrt(-a**2*x**2 + 1) + 2*a**3*x**3*sqrt(-a**
2*x**2 + 1) - 2*a*x*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x) + Integral(a**3*x**3/(-a**4*x**4*sqrt(-a*
*2*x**2 + 1) + 2*a**3*x**3*sqrt(-a**2*x**2 + 1) - 2*a*x*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x) + Int
egral(1/(-a**4*x**4*sqrt(-a**2*x**2 + 1) + 2*a**3*x**3*sqrt(-a**2*x**2 + 1) - 2*a*x*sqrt(-a**2*x**2 + 1) + sqr
t(-a**2*x**2 + 1)), x))/c**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}{\left (a c x - c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x, algorithm="giac")

[Out]

integrate((a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*(a*c*x - c)^2), x)