3.162 \(\int \frac{e^{\tanh ^{-1}(a x)}}{c-a c x} \, dx\)

Optimal. Leaf size=43 \[ \frac{2 \sqrt{1-a^2 x^2}}{a c (1-a x)}-\frac{\sin ^{-1}(a x)}{a c} \]

[Out]

(2*Sqrt[1 - a^2*x^2])/(a*c*(1 - a*x)) - ArcSin[a*x]/(a*c)

________________________________________________________________________________________

Rubi [A]  time = 0.0407308, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {6127, 663, 216} \[ \frac{2 \sqrt{1-a^2 x^2}}{a c (1-a x)}-\frac{\sin ^{-1}(a x)}{a c} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]/(c - a*c*x),x]

[Out]

(2*Sqrt[1 - a^2*x^2])/(a*c*(1 - a*x)) - ArcSin[a*x]/(a*c)

Rule 6127

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rule 663

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + p + 1)), x] - Dist[(c*p)/(e^2*(m + p + 1)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1
, 0] && IntegerQ[2*p]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)}}{c-a c x} \, dx &=c \int \frac{\sqrt{1-a^2 x^2}}{(c-a c x)^2} \, dx\\ &=\frac{2 \sqrt{1-a^2 x^2}}{a c (1-a x)}-\frac{\int \frac{1}{\sqrt{1-a^2 x^2}} \, dx}{c}\\ &=\frac{2 \sqrt{1-a^2 x^2}}{a c (1-a x)}-\frac{\sin ^{-1}(a x)}{a c}\\ \end{align*}

Mathematica [A]  time = 0.0244408, size = 46, normalized size = 1.07 \[ \frac{2 \left (\frac{\sqrt{a x+1}}{\sqrt{1-a x}}+\sin ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{2}}\right )\right )}{a c} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]/(c - a*c*x),x]

[Out]

(2*(Sqrt[1 + a*x]/Sqrt[1 - a*x] + ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/(a*c)

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 76, normalized size = 1.8 \begin{align*} -{\frac{1}{c}\arctan \left ({x\sqrt{{a}^{2}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ){\frac{1}{\sqrt{{a}^{2}}}}}-2\,{\frac{1}{{a}^{2}c}\sqrt{-{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,a \left ( x-{a}^{-1} \right ) } \left ( x-{a}^{-1} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)/(-a*c*x+c),x)

[Out]

-1/c/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2))-2/c/a^2/(x-1/a)*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/(-a*c*x+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.66591, size = 136, normalized size = 3.16 \begin{align*} \frac{2 \,{\left (a x +{\left (a x - 1\right )} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{a x}\right ) - \sqrt{-a^{2} x^{2} + 1} - 1\right )}}{a^{2} c x - a c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/(-a*c*x+c),x, algorithm="fricas")

[Out]

2*(a*x + (a*x - 1)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) - sqrt(-a^2*x^2 + 1) - 1)/(a^2*c*x - a*c)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{\int \frac{a x}{a x \sqrt{- a^{2} x^{2} + 1} - \sqrt{- a^{2} x^{2} + 1}}\, dx + \int \frac{1}{a x \sqrt{- a^{2} x^{2} + 1} - \sqrt{- a^{2} x^{2} + 1}}\, dx}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)/(-a*c*x+c),x)

[Out]

-(Integral(a*x/(a*x*sqrt(-a**2*x**2 + 1) - sqrt(-a**2*x**2 + 1)), x) + Integral(1/(a*x*sqrt(-a**2*x**2 + 1) -
sqrt(-a**2*x**2 + 1)), x))/c

________________________________________________________________________________________

Giac [A]  time = 1.23907, size = 72, normalized size = 1.67 \begin{align*} -\frac{\arcsin \left (a x\right ) \mathrm{sgn}\left (a\right )}{c{\left | a \right |}} + \frac{4}{c{\left (\frac{\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a}{a^{2} x} - 1\right )}{\left | a \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/(-a*c*x+c),x, algorithm="giac")

[Out]

-arcsin(a*x)*sgn(a)/(c*abs(a)) + 4/(c*((sqrt(-a^2*x^2 + 1)*abs(a) + a)/(a^2*x) - 1)*abs(a))