3.149 \(\int e^{n \tanh ^{-1}(a x)} x^3 \, dx\)

Optimal. Leaf size=155 \[ -\frac{2^{\frac{n}{2}-2} n \left (n^2+8\right ) (1-a x)^{1-\frac{n}{2}} \text{Hypergeometric2F1}\left (1-\frac{n}{2},-\frac{n}{2},2-\frac{n}{2},\frac{1}{2} (1-a x)\right )}{3 a^4 (2-n)}-\frac{(a x+1)^{\frac{n+2}{2}} \left (2 a n x+n^2+6\right ) (1-a x)^{1-\frac{n}{2}}}{24 a^4}-\frac{x^2 (a x+1)^{\frac{n+2}{2}} (1-a x)^{1-\frac{n}{2}}}{4 a^2} \]

[Out]

-(x^2*(1 - a*x)^(1 - n/2)*(1 + a*x)^((2 + n)/2))/(4*a^2) - ((1 - a*x)^(1 - n/2)*(1 + a*x)^((2 + n)/2)*(6 + n^2
 + 2*a*n*x))/(24*a^4) - (2^(-2 + n/2)*n*(8 + n^2)*(1 - a*x)^(1 - n/2)*Hypergeometric2F1[1 - n/2, -n/2, 2 - n/2
, (1 - a*x)/2])/(3*a^4*(2 - n))

________________________________________________________________________________________

Rubi [A]  time = 0.117522, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6126, 100, 147, 69} \[ -\frac{2^{\frac{n}{2}-2} n \left (n^2+8\right ) (1-a x)^{1-\frac{n}{2}} \, _2F_1\left (1-\frac{n}{2},-\frac{n}{2};2-\frac{n}{2};\frac{1}{2} (1-a x)\right )}{3 a^4 (2-n)}-\frac{(a x+1)^{\frac{n+2}{2}} \left (2 a n x+n^2+6\right ) (1-a x)^{1-\frac{n}{2}}}{24 a^4}-\frac{x^2 (a x+1)^{\frac{n+2}{2}} (1-a x)^{1-\frac{n}{2}}}{4 a^2} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTanh[a*x])*x^3,x]

[Out]

-(x^2*(1 - a*x)^(1 - n/2)*(1 + a*x)^((2 + n)/2))/(4*a^2) - ((1 - a*x)^(1 - n/2)*(1 + a*x)^((2 + n)/2)*(6 + n^2
 + 2*a*n*x))/(24*a^4) - (2^(-2 + n/2)*n*(8 + n^2)*(1 - a*x)^(1 - n/2)*Hypergeometric2F1[1 - n/2, -n/2, 2 - n/2
, (1 - a*x)/2])/(3*a^4*(2 - n))

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int e^{n \tanh ^{-1}(a x)} x^3 \, dx &=\int x^3 (1-a x)^{-n/2} (1+a x)^{n/2} \, dx\\ &=-\frac{x^2 (1-a x)^{1-\frac{n}{2}} (1+a x)^{\frac{2+n}{2}}}{4 a^2}-\frac{\int x (1-a x)^{-n/2} (1+a x)^{n/2} (-2-a n x) \, dx}{4 a^2}\\ &=-\frac{x^2 (1-a x)^{1-\frac{n}{2}} (1+a x)^{\frac{2+n}{2}}}{4 a^2}-\frac{(1-a x)^{1-\frac{n}{2}} (1+a x)^{\frac{2+n}{2}} \left (6+n^2+2 a n x\right )}{24 a^4}+\frac{\left (n \left (8+n^2\right )\right ) \int (1-a x)^{-n/2} (1+a x)^{n/2} \, dx}{24 a^3}\\ &=-\frac{x^2 (1-a x)^{1-\frac{n}{2}} (1+a x)^{\frac{2+n}{2}}}{4 a^2}-\frac{(1-a x)^{1-\frac{n}{2}} (1+a x)^{\frac{2+n}{2}} \left (6+n^2+2 a n x\right )}{24 a^4}-\frac{2^{-2+\frac{n}{2}} n \left (8+n^2\right ) (1-a x)^{1-\frac{n}{2}} \, _2F_1\left (1-\frac{n}{2},-\frac{n}{2};2-\frac{n}{2};\frac{1}{2} (1-a x)\right )}{3 a^4 (2-n)}\\ \end{align*}

Mathematica [A]  time = 0.1721, size = 182, normalized size = 1.17 \[ -\frac{(1-a x)^{1-\frac{n}{2}} \left ((n-2) \left (a^2 x^2 (a x+1)^{\frac{n}{2}+1}-2^{\frac{n}{2}+1} \text{Hypergeometric2F1}\left (1-\frac{n}{2},-\frac{n}{2},2-\frac{n}{2},\frac{1}{2} (1-a x)\right )\right )-2^{\frac{n}{2}+3} n \text{Hypergeometric2F1}\left (-\frac{n}{2}-2,1-\frac{n}{2},2-\frac{n}{2},\frac{1}{2} (1-a x)\right )+2^{\frac{n}{2}+3} (n-1) \text{Hypergeometric2F1}\left (-\frac{n}{2}-1,1-\frac{n}{2},2-\frac{n}{2},\frac{1}{2} (1-a x)\right )\right )}{4 a^4 (n-2)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(n*ArcTanh[a*x])*x^3,x]

[Out]

-((1 - a*x)^(1 - n/2)*(-(2^(3 + n/2)*n*Hypergeometric2F1[-2 - n/2, 1 - n/2, 2 - n/2, (1 - a*x)/2]) + 2^(3 + n/
2)*(-1 + n)*Hypergeometric2F1[-1 - n/2, 1 - n/2, 2 - n/2, (1 - a*x)/2] + (-2 + n)*(a^2*x^2*(1 + a*x)^(1 + n/2)
 - 2^(1 + n/2)*Hypergeometric2F1[1 - n/2, -n/2, 2 - n/2, (1 - a*x)/2])))/(4*a^4*(-2 + n))

________________________________________________________________________________________

Maple [F]  time = 0.059, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{n{\it Artanh} \left ( ax \right ) }}{x}^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))*x^3,x)

[Out]

int(exp(n*arctanh(a*x))*x^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^3,x, algorithm="maxima")

[Out]

integrate(x^3*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x^{3} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^3,x, algorithm="fricas")

[Out]

integral(x^3*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} e^{n \operatorname{atanh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))*x**3,x)

[Out]

Integral(x**3*exp(n*atanh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^3,x, algorithm="giac")

[Out]

integrate(x^3*((a*x + 1)/(a*x - 1))^(1/2*n), x)