3.145 \(\int e^{-\tanh ^{-1}(a x)} x^m \, dx\)

Optimal. Leaf size=75 \[ \frac{x^{m+1} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+1}{2},\frac{m+3}{2},a^2 x^2\right )}{m+1}-\frac{a x^{m+2} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+2}{2},\frac{m+4}{2},a^2 x^2\right )}{m+2} \]

[Out]

(x^(1 + m)*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(1 + m) - (a*x^(2 + m)*Hypergeometric2F1[1/2
, (2 + m)/2, (4 + m)/2, a^2*x^2])/(2 + m)

________________________________________________________________________________________

Rubi [A]  time = 0.0445418, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {6124, 808, 364} \[ \frac{x^{m+1} \, _2F_1\left (\frac{1}{2},\frac{m+1}{2};\frac{m+3}{2};a^2 x^2\right )}{m+1}-\frac{a x^{m+2} \, _2F_1\left (\frac{1}{2},\frac{m+2}{2};\frac{m+4}{2};a^2 x^2\right )}{m+2} \]

Antiderivative was successfully verified.

[In]

Int[x^m/E^ArcTanh[a*x],x]

[Out]

(x^(1 + m)*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(1 + m) - (a*x^(2 + m)*Hypergeometric2F1[1/2
, (2 + m)/2, (4 + m)/2, a^2*x^2])/(2 + m)

Rule 6124

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/
2)*Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2]

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int e^{-\tanh ^{-1}(a x)} x^m \, dx &=\int \frac{x^m (1-a x)}{\sqrt{1-a^2 x^2}} \, dx\\ &=-\left (a \int \frac{x^{1+m}}{\sqrt{1-a^2 x^2}} \, dx\right )+\int \frac{x^m}{\sqrt{1-a^2 x^2}} \, dx\\ &=\frac{x^{1+m} \, _2F_1\left (\frac{1}{2},\frac{1+m}{2};\frac{3+m}{2};a^2 x^2\right )}{1+m}-\frac{a x^{2+m} \, _2F_1\left (\frac{1}{2},\frac{2+m}{2};\frac{4+m}{2};a^2 x^2\right )}{2+m}\\ \end{align*}

Mathematica [C]  time = 0.0271574, size = 31, normalized size = 0.41 \[ \frac{x^{m+1} F_1\left (m+1;-\frac{1}{2},\frac{1}{2};m+2;a x,-a x\right )}{m+1} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^m/E^ArcTanh[a*x],x]

[Out]

(x^(1 + m)*AppellF1[1 + m, -1/2, 1/2, 2 + m, a*x, -(a*x)])/(1 + m)

________________________________________________________________________________________

Maple [F]  time = 0.381, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{m}}{ax+1}\sqrt{-{a}^{2}{x}^{2}+1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/(a*x+1)*(-a^2*x^2+1)^(1/2),x)

[Out]

int(x^m/(a*x+1)*(-a^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1} x^{m}}{a x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*x^m/(a*x + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-a^{2} x^{2} + 1} x^{m}}{a x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*x^m/(a*x + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} \sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}{a x + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m/(a*x+1)*(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x**m*sqrt(-(a*x - 1)*(a*x + 1))/(a*x + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1} x^{m}}{a x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*x^m/(a*x + 1), x)