3.1330 \(\int e^{n \tanh ^{-1}(a x)} \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=104 \[ -\frac{2^{\frac{n+3}{2}} \sqrt{c-a^2 c x^2} (1-a x)^{\frac{3-n}{2}} \text{Hypergeometric2F1}\left (\frac{1}{2} (-n-1),\frac{3-n}{2},\frac{5-n}{2},\frac{1}{2} (1-a x)\right )}{a (3-n) \sqrt{1-a^2 x^2}} \]

[Out]

-((2^((3 + n)/2)*(1 - a*x)^((3 - n)/2)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[(-1 - n)/2, (3 - n)/2, (5 - n)/2,
 (1 - a*x)/2])/(a*(3 - n)*Sqrt[1 - a^2*x^2]))

________________________________________________________________________________________

Rubi [A]  time = 0.096049, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {6143, 6140, 69} \[ -\frac{2^{\frac{n+3}{2}} \sqrt{c-a^2 c x^2} (1-a x)^{\frac{3-n}{2}} \, _2F_1\left (\frac{1}{2} (-n-1),\frac{3-n}{2};\frac{5-n}{2};\frac{1}{2} (1-a x)\right )}{a (3-n) \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2],x]

[Out]

-((2^((3 + n)/2)*(1 - a*x)^((3 - n)/2)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[(-1 - n)/2, (3 - n)/2, (5 - n)/2,
 (1 - a*x)/2])/(a*(3 - n)*Sqrt[1 - a^2*x^2]))

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int e^{n \tanh ^{-1}(a x)} \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{n \tanh ^{-1}(a x)} \sqrt{1-a^2 x^2} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int (1-a x)^{\frac{1}{2}-\frac{n}{2}} (1+a x)^{\frac{1}{2}+\frac{n}{2}} \, dx}{\sqrt{1-a^2 x^2}}\\ &=-\frac{2^{\frac{3+n}{2}} (1-a x)^{\frac{3-n}{2}} \sqrt{c-a^2 c x^2} \, _2F_1\left (\frac{1}{2} (-1-n),\frac{3-n}{2};\frac{5-n}{2};\frac{1}{2} (1-a x)\right )}{a (3-n) \sqrt{1-a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0494407, size = 101, normalized size = 0.97 \[ \frac{2^{\frac{n+3}{2}} \sqrt{c-a^2 c x^2} (1-a x)^{\frac{3}{2}-\frac{n}{2}} \text{Hypergeometric2F1}\left (\frac{1}{2} (-n-1),\frac{3-n}{2},\frac{5-n}{2},\frac{1}{2} (1-a x)\right )}{a (n-3) \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2],x]

[Out]

(2^((3 + n)/2)*(1 - a*x)^(3/2 - n/2)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[(-1 - n)/2, (3 - n)/2, (5 - n)/2, (
1 - a*x)/2])/(a*(-3 + n)*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.205, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{n{\it Artanh} \left ( ax \right ) }}\sqrt{-{a}^{2}c{x}^{2}+c}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))*(-a^2*c*x^2+c)^(1/2),x)

[Out]

int(exp(n*arctanh(a*x))*(-a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-a^{2} c x^{2} + c} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{-a^{2} c x^{2} + c} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*c*x^2 + c)*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )} e^{n \operatorname{atanh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))*(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))*exp(n*atanh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-a^{2} c x^{2} + c} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*((a*x + 1)/(a*x - 1))^(1/2*n), x)