3.1328 \(\int e^{n \tanh ^{-1}(a x)} x^2 \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=244 \[ -\frac{2^{\frac{n-1}{2}} \left (n^2+3\right ) \sqrt{c-a^2 c x^2} (1-a x)^{\frac{3-n}{2}} \text{Hypergeometric2F1}\left (\frac{1}{2} (-n-1),\frac{3-n}{2},\frac{5-n}{2},\frac{1}{2} (1-a x)\right )}{3 a^3 (3-n) \sqrt{1-a^2 x^2}}-\frac{n \sqrt{c-a^2 c x^2} (a x+1)^{\frac{n+3}{2}} (1-a x)^{\frac{3-n}{2}}}{12 a^3 \sqrt{1-a^2 x^2}}-\frac{x \sqrt{c-a^2 c x^2} (a x+1)^{\frac{n+3}{2}} (1-a x)^{\frac{3-n}{2}}}{4 a^2 \sqrt{1-a^2 x^2}} \]

[Out]

-(n*(1 - a*x)^((3 - n)/2)*(1 + a*x)^((3 + n)/2)*Sqrt[c - a^2*c*x^2])/(12*a^3*Sqrt[1 - a^2*x^2]) - (x*(1 - a*x)
^((3 - n)/2)*(1 + a*x)^((3 + n)/2)*Sqrt[c - a^2*c*x^2])/(4*a^2*Sqrt[1 - a^2*x^2]) - (2^((-1 + n)/2)*(3 + n^2)*
(1 - a*x)^((3 - n)/2)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[(-1 - n)/2, (3 - n)/2, (5 - n)/2, (1 - a*x)/2])/(3
*a^3*(3 - n)*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.312724, antiderivative size = 244, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {6153, 6150, 90, 80, 69} \[ -\frac{2^{\frac{n-1}{2}} \left (n^2+3\right ) \sqrt{c-a^2 c x^2} (1-a x)^{\frac{3-n}{2}} \, _2F_1\left (\frac{1}{2} (-n-1),\frac{3-n}{2};\frac{5-n}{2};\frac{1}{2} (1-a x)\right )}{3 a^3 (3-n) \sqrt{1-a^2 x^2}}-\frac{n \sqrt{c-a^2 c x^2} (a x+1)^{\frac{n+3}{2}} (1-a x)^{\frac{3-n}{2}}}{12 a^3 \sqrt{1-a^2 x^2}}-\frac{x \sqrt{c-a^2 c x^2} (a x+1)^{\frac{n+3}{2}} (1-a x)^{\frac{3-n}{2}}}{4 a^2 \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTanh[a*x])*x^2*Sqrt[c - a^2*c*x^2],x]

[Out]

-(n*(1 - a*x)^((3 - n)/2)*(1 + a*x)^((3 + n)/2)*Sqrt[c - a^2*c*x^2])/(12*a^3*Sqrt[1 - a^2*x^2]) - (x*(1 - a*x)
^((3 - n)/2)*(1 + a*x)^((3 + n)/2)*Sqrt[c - a^2*c*x^2])/(4*a^2*Sqrt[1 - a^2*x^2]) - (2^((-1 + n)/2)*(3 + n^2)*
(1 - a*x)^((3 - n)/2)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[(-1 - n)/2, (3 - n)/2, (5 - n)/2, (1 - a*x)/2])/(3
*a^3*(3 - n)*Sqrt[1 - a^2*x^2])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int e^{n \tanh ^{-1}(a x)} x^2 \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{n \tanh ^{-1}(a x)} x^2 \sqrt{1-a^2 x^2} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int x^2 (1-a x)^{\frac{1}{2}-\frac{n}{2}} (1+a x)^{\frac{1}{2}+\frac{n}{2}} \, dx}{\sqrt{1-a^2 x^2}}\\ &=-\frac{x (1-a x)^{\frac{3-n}{2}} (1+a x)^{\frac{3+n}{2}} \sqrt{c-a^2 c x^2}}{4 a^2 \sqrt{1-a^2 x^2}}-\frac{\sqrt{c-a^2 c x^2} \int (1-a x)^{\frac{1}{2}-\frac{n}{2}} (1+a x)^{\frac{1}{2}+\frac{n}{2}} (-1-a n x) \, dx}{4 a^2 \sqrt{1-a^2 x^2}}\\ &=-\frac{n (1-a x)^{\frac{3-n}{2}} (1+a x)^{\frac{3+n}{2}} \sqrt{c-a^2 c x^2}}{12 a^3 \sqrt{1-a^2 x^2}}-\frac{x (1-a x)^{\frac{3-n}{2}} (1+a x)^{\frac{3+n}{2}} \sqrt{c-a^2 c x^2}}{4 a^2 \sqrt{1-a^2 x^2}}+\frac{\left (\left (3+n^2\right ) \sqrt{c-a^2 c x^2}\right ) \int (1-a x)^{\frac{1}{2}-\frac{n}{2}} (1+a x)^{\frac{1}{2}+\frac{n}{2}} \, dx}{12 a^2 \sqrt{1-a^2 x^2}}\\ &=-\frac{n (1-a x)^{\frac{3-n}{2}} (1+a x)^{\frac{3+n}{2}} \sqrt{c-a^2 c x^2}}{12 a^3 \sqrt{1-a^2 x^2}}-\frac{x (1-a x)^{\frac{3-n}{2}} (1+a x)^{\frac{3+n}{2}} \sqrt{c-a^2 c x^2}}{4 a^2 \sqrt{1-a^2 x^2}}-\frac{2^{\frac{1}{2} (-1+n)} \left (3+n^2\right ) (1-a x)^{\frac{3-n}{2}} \sqrt{c-a^2 c x^2} \, _2F_1\left (\frac{1}{2} (-1-n),\frac{3-n}{2};\frac{5-n}{2};\frac{1}{2} (1-a x)\right )}{3 a^3 (3-n) \sqrt{1-a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.191262, size = 135, normalized size = 0.55 \[ \frac{\sqrt{c-a^2 c x^2} (1-a x)^{\frac{3}{2}-\frac{n}{2}} \left (2^{\frac{n+3}{2}} \left (n^2+3\right ) \text{Hypergeometric2F1}\left (\frac{1}{2} (-n-1),\frac{3-n}{2},\frac{5-n}{2},\frac{1}{2} (1-a x)\right )-(n-3) (a x+1)^{\frac{n+3}{2}} (3 a x+n)\right )}{12 a^3 (n-3) \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTanh[a*x])*x^2*Sqrt[c - a^2*c*x^2],x]

[Out]

((1 - a*x)^(3/2 - n/2)*Sqrt[c - a^2*c*x^2]*(-((-3 + n)*(1 + a*x)^((3 + n)/2)*(n + 3*a*x)) + 2^((3 + n)/2)*(3 +
 n^2)*Hypergeometric2F1[(-1 - n)/2, (3 - n)/2, (5 - n)/2, (1 - a*x)/2]))/(12*a^3*(-3 + n)*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.207, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{n{\it Artanh} \left ( ax \right ) }}{x}^{2}\sqrt{-{a}^{2}c{x}^{2}+c}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))*x^2*(-a^2*c*x^2+c)^(1/2),x)

[Out]

int(exp(n*arctanh(a*x))*x^2*(-a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-a^{2} c x^{2} + c} x^{2} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^2*(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*x^2*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{-a^{2} c x^{2} + c} x^{2} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^2*(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*c*x^2 + c)*x^2*((a*x + 1)/(a*x - 1))^(1/2*n), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )} e^{n \operatorname{atanh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))*x**2*(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(x**2*sqrt(-c*(a*x - 1)*(a*x + 1))*exp(n*atanh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-a^{2} c x^{2} + c} x^{2} \left (\frac{a x + 1}{a x - 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^2*(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*x^2*((a*x + 1)/(a*x - 1))^(1/2*n), x)