3.1284 \(\int \frac{e^{\frac{1}{2} \tanh ^{-1}(a x)}}{\sqrt{1-a^2 x^2}} \, dx\)

Optimal. Leaf size=193 \[ \frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2} a}-\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2} a}+\frac{\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{a}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{a} \]

[Out]

(Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/a - (Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/
4))/(1 + a*x)^(1/4)])/a + Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/(Sq
rt[2]*a) - Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/(Sqrt[2]*a)

________________________________________________________________________________________

Rubi [A]  time = 0.142258, antiderivative size = 193, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {6140, 63, 240, 211, 1165, 628, 1162, 617, 204} \[ \frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2} a}-\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2} a}+\frac{\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{a}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{a} \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcTanh[a*x]/2)/Sqrt[1 - a^2*x^2],x]

[Out]

(Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/a - (Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/
4))/(1 + a*x)^(1/4)])/a + Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/(Sq
rt[2]*a) - Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/(Sqrt[2]*a)

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{\frac{1}{2} \tanh ^{-1}(a x)}}{\sqrt{1-a^2 x^2}} \, dx &=\int \frac{1}{(1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\frac{4 \operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{2-x^4}} \, dx,x,\sqrt [4]{1-a x}\right )}{a}\\ &=-\frac{4 \operatorname{Subst}\left (\int \frac{1}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}\\ &=-\frac{2 \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}-\frac{2 \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2} a}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2} a}\\ &=\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2} a}-\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2} a}-\frac{\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}+\frac{\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}\\ &=\frac{\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}-\frac{\sqrt{2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a}+\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2} a}-\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2} a}\\ \end{align*}

Mathematica [C]  time = 0.0107849, size = 40, normalized size = 0.21 \[ -\frac{2\ 2^{3/4} \sqrt [4]{1-a x} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{4},\frac{5}{4},\frac{1}{2} (1-a x)\right )}{a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcTanh[a*x]/2)/Sqrt[1 - a^2*x^2],x]

[Out]

(-2*2^(3/4)*(1 - a*x)^(1/4)*Hypergeometric2F1[1/4, 1/4, 5/4, (1 - a*x)/2])/a

________________________________________________________________________________________

Maple [F]  time = 0.21, size = 0, normalized size = 0. \begin{align*} \int{\sqrt{{(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*x^2+1)^(1/2),x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}}}{\sqrt{-a^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 2.77645, size = 1183, normalized size = 6.13 \begin{align*} -2 \, \sqrt{2} \frac{1}{a^{4}}^{\frac{1}{4}} \arctan \left (\sqrt{2} a \sqrt{\frac{\sqrt{2}{\left (a^{4} x - a^{3}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{3}{4}} +{\left (a^{3} x - a^{2}\right )} \sqrt{\frac{1}{a^{4}}} - \sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{1}{4}} - \sqrt{2} a \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{1}{4}} - 1\right ) - 2 \, \sqrt{2} \frac{1}{a^{4}}^{\frac{1}{4}} \arctan \left (\sqrt{2} a \sqrt{-\frac{\sqrt{2}{\left (a^{4} x - a^{3}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{3}{4}} -{\left (a^{3} x - a^{2}\right )} \sqrt{\frac{1}{a^{4}}} + \sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{1}{4}} - \sqrt{2} a \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{1}{4}} + 1\right ) - \frac{1}{2} \, \sqrt{2} \frac{1}{a^{4}}^{\frac{1}{4}} \log \left (\frac{\sqrt{2}{\left (a^{4} x - a^{3}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{3}{4}} +{\left (a^{3} x - a^{2}\right )} \sqrt{\frac{1}{a^{4}}} - \sqrt{-a^{2} x^{2} + 1}}{a x - 1}\right ) + \frac{1}{2} \, \sqrt{2} \frac{1}{a^{4}}^{\frac{1}{4}} \log \left (-\frac{\sqrt{2}{\left (a^{4} x - a^{3}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{4}}^{\frac{3}{4}} -{\left (a^{3} x - a^{2}\right )} \sqrt{\frac{1}{a^{4}}} + \sqrt{-a^{2} x^{2} + 1}}{a x - 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-2*sqrt(2)*(a^(-4))^(1/4)*arctan(sqrt(2)*a*sqrt((sqrt(2)*(a^4*x - a^3)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^
(-4))^(3/4) + (a^3*x - a^2)*sqrt(a^(-4)) - sqrt(-a^2*x^2 + 1))/(a*x - 1))*(a^(-4))^(1/4) - sqrt(2)*a*sqrt(-sqr
t(-a^2*x^2 + 1)/(a*x - 1))*(a^(-4))^(1/4) - 1) - 2*sqrt(2)*(a^(-4))^(1/4)*arctan(sqrt(2)*a*sqrt(-(sqrt(2)*(a^4
*x - a^3)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-4))^(3/4) - (a^3*x - a^2)*sqrt(a^(-4)) + sqrt(-a^2*x^2 + 1)
)/(a*x - 1))*(a^(-4))^(1/4) - sqrt(2)*a*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-4))^(1/4) + 1) - 1/2*sqrt(2)*
(a^(-4))^(1/4)*log((sqrt(2)*(a^4*x - a^3)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-4))^(3/4) + (a^3*x - a^2)*s
qrt(a^(-4)) - sqrt(-a^2*x^2 + 1))/(a*x - 1)) + 1/2*sqrt(2)*(a^(-4))^(1/4)*log(-(sqrt(2)*(a^4*x - a^3)*sqrt(-sq
rt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-4))^(3/4) - (a^3*x - a^2)*sqrt(a^(-4)) + sqrt(-a^2*x^2 + 1))/(a*x - 1))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x + 1}{\sqrt{- a^{2} x^{2} + 1}}}}{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(1/2)/(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(sqrt((a*x + 1)/sqrt(-a**2*x**2 + 1))/sqrt(-(a*x - 1)*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}}}{\sqrt{-a^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/sqrt(-a^2*x^2 + 1), x)