3.1248 \(\int \frac{e^{-2 \tanh ^{-1}(a x)}}{\sqrt{c-a^2 c x^2}} \, dx\)

Optimal. Leaf size=61 \[ -\frac{2 (1-a x)}{a \sqrt{c-a^2 c x^2}}-\frac{\tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{a \sqrt{c}} \]

[Out]

(-2*(1 - a*x))/(a*Sqrt[c - a^2*c*x^2]) - ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]]/(a*Sqrt[c])

________________________________________________________________________________________

Rubi [A]  time = 0.0669253, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {6142, 653, 217, 203} \[ -\frac{2 (1-a x)}{a \sqrt{c-a^2 c x^2}}-\frac{\tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{a \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(2*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2]),x]

[Out]

(-2*(1 - a*x))/(a*Sqrt[c - a^2*c*x^2]) - ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]]/(a*Sqrt[c])

Rule 6142

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/c^(n/2), Int[(c + d*x^2)^(p
+ n/2)/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) && I
LtQ[n/2, 0]

Rule 653

Int[((d_) + (e_.)*(x_))^2*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)*(a + c*x^2)^(p + 1))/(c*(
p + 1)), x] - Dist[(e^2*(p + 2))/(c*(p + 1)), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, p}, x] &&
EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p, -1]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-2 \tanh ^{-1}(a x)}}{\sqrt{c-a^2 c x^2}} \, dx &=c \int \frac{(1-a x)^2}{\left (c-a^2 c x^2\right )^{3/2}} \, dx\\ &=-\frac{2 (1-a x)}{a \sqrt{c-a^2 c x^2}}-\int \frac{1}{\sqrt{c-a^2 c x^2}} \, dx\\ &=-\frac{2 (1-a x)}{a \sqrt{c-a^2 c x^2}}-\operatorname{Subst}\left (\int \frac{1}{1+a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c-a^2 c x^2}}\right )\\ &=-\frac{2 (1-a x)}{a \sqrt{c-a^2 c x^2}}-\frac{\tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{a \sqrt{c}}\\ \end{align*}

Mathematica [A]  time = 0.0639273, size = 100, normalized size = 1.64 \[ \frac{2 \sqrt{1-a^2 x^2} \left (\sqrt{a x+1} (a x-1)+\sqrt{1-a x} (a x+1) \sin ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{2}}\right )\right )}{a \sqrt{1-a x} (a x+1) \sqrt{c-a^2 c x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^(2*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2]),x]

[Out]

(2*Sqrt[1 - a^2*x^2]*((-1 + a*x)*Sqrt[1 + a*x] + Sqrt[1 - a*x]*(1 + a*x)*ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/(a*Sq
rt[1 - a*x]*(1 + a*x)*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 74, normalized size = 1.2 \begin{align*} -{\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-{a}^{2}c{x}^{2}+c}}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}}-2\,{\frac{\sqrt{-c{a}^{2} \left ( x+{a}^{-1} \right ) ^{2}+2\,ac \left ( x+{a}^{-1} \right ) }}{{a}^{2}c \left ( x+{a}^{-1} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^2*(-a^2*x^2+1)/(-a^2*c*x^2+c)^(1/2),x)

[Out]

-1/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*x^2+c)^(1/2))-2/a^2/c/(x+1/a)*(-c*a^2*(x+1/a)^2+2*a*c*(x+1/a))
^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^2*(-a^2*x^2+1)/(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.51008, size = 338, normalized size = 5.54 \begin{align*} \left [-\frac{{\left (a x + 1\right )} \sqrt{-c} \log \left (2 \, a^{2} c x^{2} + 2 \, \sqrt{-a^{2} c x^{2} + c} a \sqrt{-c} x - c\right ) + 4 \, \sqrt{-a^{2} c x^{2} + c}}{2 \,{\left (a^{2} c x + a c\right )}}, \frac{{\left (a x + 1\right )} \sqrt{c} \arctan \left (\frac{\sqrt{-a^{2} c x^{2} + c} a \sqrt{c} x}{a^{2} c x^{2} - c}\right ) - 2 \, \sqrt{-a^{2} c x^{2} + c}}{a^{2} c x + a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^2*(-a^2*x^2+1)/(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*((a*x + 1)*sqrt(-c)*log(2*a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) + 4*sqrt(-a^2*c*x^2 + c))
/(a^2*c*x + a*c), ((a*x + 1)*sqrt(c)*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 - c)) - 2*sqrt(-a^2*c*
x^2 + c))/(a^2*c*x + a*c)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{a x}{a x \sqrt{- a^{2} c x^{2} + c} + \sqrt{- a^{2} c x^{2} + c}}\, dx - \int - \frac{1}{a x \sqrt{- a^{2} c x^{2} + c} + \sqrt{- a^{2} c x^{2} + c}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**2*(-a**2*x**2+1)/(-a**2*c*x**2+c)**(1/2),x)

[Out]

-Integral(a*x/(a*x*sqrt(-a**2*c*x**2 + c) + sqrt(-a**2*c*x**2 + c)), x) - Integral(-1/(a*x*sqrt(-a**2*c*x**2 +
 c) + sqrt(-a**2*c*x**2 + c)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{a^{2} x^{2} - 1}{\sqrt{-a^{2} c x^{2} + c}{\left (a x + 1\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^2*(-a^2*x^2+1)/(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(-(a^2*x^2 - 1)/(sqrt(-a^2*c*x^2 + c)*(a*x + 1)^2), x)