3.1245 \(\int e^{-2 \tanh ^{-1}(a x)} (c-a^2 c x^2)^{3/2} \, dx\)

Optimal. Leaf size=108 \[ \frac{5 c^{3/2} \tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{8 a}+\frac{5}{8} c x \sqrt{c-a^2 c x^2}+\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a} \]

[Out]

(5*c*x*Sqrt[c - a^2*c*x^2])/8 + (5*(c - a^2*c*x^2)^(3/2))/(12*a) + ((1 - a*x)*(c - a^2*c*x^2)^(3/2))/(4*a) + (
5*c^(3/2)*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]])/(8*a)

________________________________________________________________________________________

Rubi [A]  time = 0.0865184, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {6142, 671, 641, 195, 217, 203} \[ \frac{5 c^{3/2} \tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{8 a}+\frac{5}{8} c x \sqrt{c-a^2 c x^2}+\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a} \]

Antiderivative was successfully verified.

[In]

Int[(c - a^2*c*x^2)^(3/2)/E^(2*ArcTanh[a*x]),x]

[Out]

(5*c*x*Sqrt[c - a^2*c*x^2])/8 + (5*(c - a^2*c*x^2)^(3/2))/(12*a) + ((1 - a*x)*(c - a^2*c*x^2)^(3/2))/(4*a) + (
5*c^(3/2)*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]])/(8*a)

Rule 6142

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/c^(n/2), Int[(c + d*x^2)^(p
+ n/2)/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) && I
LtQ[n/2, 0]

Rule 671

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
 + 1))/(c*(m + 2*p + 1)), x] + Dist[(2*c*d*(m + p))/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p, x]
, x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p
]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int e^{-2 \tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx &=c \int (1-a x)^2 \sqrt{c-a^2 c x^2} \, dx\\ &=\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{4} (5 c) \int (1-a x) \sqrt{c-a^2 c x^2} \, dx\\ &=\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}+\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{4} (5 c) \int \sqrt{c-a^2 c x^2} \, dx\\ &=\frac{5}{8} c x \sqrt{c-a^2 c x^2}+\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}+\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{8} \left (5 c^2\right ) \int \frac{1}{\sqrt{c-a^2 c x^2}} \, dx\\ &=\frac{5}{8} c x \sqrt{c-a^2 c x^2}+\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}+\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{8} \left (5 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c-a^2 c x^2}}\right )\\ &=\frac{5}{8} c x \sqrt{c-a^2 c x^2}+\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}+\frac{(1-a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{5 c^{3/2} \tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{8 a}\\ \end{align*}

Mathematica [A]  time = 0.0970476, size = 117, normalized size = 1.08 \[ -\frac{c \sqrt{c-a^2 c x^2} \left (\sqrt{a x+1} \left (6 a^4 x^4-22 a^3 x^3+25 a^2 x^2+7 a x-16\right )+30 \sqrt{1-a x} \sin ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{2}}\right )\right )}{24 a \sqrt{1-a x} \sqrt{1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c - a^2*c*x^2)^(3/2)/E^(2*ArcTanh[a*x]),x]

[Out]

-(c*Sqrt[c - a^2*c*x^2]*(Sqrt[1 + a*x]*(-16 + 7*a*x + 25*a^2*x^2 - 22*a^3*x^3 + 6*a^4*x^4) + 30*Sqrt[1 - a*x]*
ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/(24*a*Sqrt[1 - a*x]*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.035, size = 174, normalized size = 1.6 \begin{align*} -{\frac{x}{4} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{3}{2}}}}-{\frac{3\,cx}{8}\sqrt{-{a}^{2}c{x}^{2}+c}}-{\frac{3\,{c}^{2}}{8}\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-{a}^{2}c{x}^{2}+c}}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}}+{\frac{2}{3\,a} \left ( -c{a}^{2} \left ( x+{a}^{-1} \right ) ^{2}+2\,ac \left ( x+{a}^{-1} \right ) \right ) ^{{\frac{3}{2}}}}+c\sqrt{-c{a}^{2} \left ( x+{a}^{-1} \right ) ^{2}+2\,ac \left ( x+{a}^{-1} \right ) }x+{{c}^{2}\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-c{a}^{2} \left ( x+{a}^{-1} \right ) ^{2}+2\,ac \left ( x+{a}^{-1} \right ) }}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*c*x^2+c)^(3/2)/(a*x+1)^2*(-a^2*x^2+1),x)

[Out]

-1/4*x*(-a^2*c*x^2+c)^(3/2)-3/8*c*x*(-a^2*c*x^2+c)^(1/2)-3/8*c^2/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*
x^2+c)^(1/2))+2/3/a*(-c*a^2*(x+1/a)^2+2*a*c*(x+1/a))^(3/2)+c*(-c*a^2*(x+1/a)^2+2*a*c*(x+1/a))^(1/2)*x+c^2/(a^2
*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-c*a^2*(x+1/a)^2+2*a*c*(x+1/a))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(3/2)/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.45324, size = 413, normalized size = 3.82 \begin{align*} \left [\frac{15 \, \sqrt{-c} c \log \left (2 \, a^{2} c x^{2} + 2 \, \sqrt{-a^{2} c x^{2} + c} a \sqrt{-c} x - c\right ) + 2 \,{\left (6 \, a^{3} c x^{3} - 16 \, a^{2} c x^{2} + 9 \, a c x + 16 \, c\right )} \sqrt{-a^{2} c x^{2} + c}}{48 \, a}, -\frac{15 \, c^{\frac{3}{2}} \arctan \left (\frac{\sqrt{-a^{2} c x^{2} + c} a \sqrt{c} x}{a^{2} c x^{2} - c}\right ) -{\left (6 \, a^{3} c x^{3} - 16 \, a^{2} c x^{2} + 9 \, a c x + 16 \, c\right )} \sqrt{-a^{2} c x^{2} + c}}{24 \, a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(3/2)/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="fricas")

[Out]

[1/48*(15*sqrt(-c)*c*log(2*a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) + 2*(6*a^3*c*x^3 - 16*a^2*c*x^
2 + 9*a*c*x + 16*c)*sqrt(-a^2*c*x^2 + c))/a, -1/24*(15*c^(3/2)*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*
x^2 - c)) - (6*a^3*c*x^3 - 16*a^2*c*x^2 + 9*a*c*x + 16*c)*sqrt(-a^2*c*x^2 + c))/a]

________________________________________________________________________________________

Sympy [C]  time = 8.39055, size = 340, normalized size = 3.15 \begin{align*} a^{2} c \left (\begin{cases} \frac{i a^{2} \sqrt{c} x^{5}}{4 \sqrt{a^{2} x^{2} - 1}} - \frac{3 i \sqrt{c} x^{3}}{8 \sqrt{a^{2} x^{2} - 1}} + \frac{i \sqrt{c} x}{8 a^{2} \sqrt{a^{2} x^{2} - 1}} - \frac{i \sqrt{c} \operatorname{acosh}{\left (a x \right )}}{8 a^{3}} & \text{for}\: \left |{a^{2} x^{2}}\right | > 1 \\- \frac{a^{2} \sqrt{c} x^{5}}{4 \sqrt{- a^{2} x^{2} + 1}} + \frac{3 \sqrt{c} x^{3}}{8 \sqrt{- a^{2} x^{2} + 1}} - \frac{\sqrt{c} x}{8 a^{2} \sqrt{- a^{2} x^{2} + 1}} + \frac{\sqrt{c} \operatorname{asin}{\left (a x \right )}}{8 a^{3}} & \text{otherwise} \end{cases}\right ) - 2 a c \left (\begin{cases} 0 & \text{for}\: c = 0 \\\frac{\sqrt{c} x^{2}}{2} & \text{for}\: a^{2} = 0 \\- \frac{\left (- a^{2} c x^{2} + c\right )^{\frac{3}{2}}}{3 a^{2} c} & \text{otherwise} \end{cases}\right ) + c \left (\begin{cases} \frac{i a^{2} \sqrt{c} x^{3}}{2 \sqrt{a^{2} x^{2} - 1}} - \frac{i \sqrt{c} x}{2 \sqrt{a^{2} x^{2} - 1}} - \frac{i \sqrt{c} \operatorname{acosh}{\left (a x \right )}}{2 a} & \text{for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac{\sqrt{c} x \sqrt{- a^{2} x^{2} + 1}}{2} + \frac{\sqrt{c} \operatorname{asin}{\left (a x \right )}}{2 a} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*c*x**2+c)**(3/2)/(a*x+1)**2*(-a**2*x**2+1),x)

[Out]

a**2*c*Piecewise((I*a**2*sqrt(c)*x**5/(4*sqrt(a**2*x**2 - 1)) - 3*I*sqrt(c)*x**3/(8*sqrt(a**2*x**2 - 1)) + I*s
qrt(c)*x/(8*a**2*sqrt(a**2*x**2 - 1)) - I*sqrt(c)*acosh(a*x)/(8*a**3), Abs(a**2*x**2) > 1), (-a**2*sqrt(c)*x**
5/(4*sqrt(-a**2*x**2 + 1)) + 3*sqrt(c)*x**3/(8*sqrt(-a**2*x**2 + 1)) - sqrt(c)*x/(8*a**2*sqrt(-a**2*x**2 + 1))
 + sqrt(c)*asin(a*x)/(8*a**3), True)) - 2*a*c*Piecewise((0, Eq(c, 0)), (sqrt(c)*x**2/2, Eq(a**2, 0)), (-(-a**2
*c*x**2 + c)**(3/2)/(3*a**2*c), True)) + c*Piecewise((I*a**2*sqrt(c)*x**3/(2*sqrt(a**2*x**2 - 1)) - I*sqrt(c)*
x/(2*sqrt(a**2*x**2 - 1)) - I*sqrt(c)*acosh(a*x)/(2*a), Abs(a**2*x**2) > 1), (sqrt(c)*x*sqrt(-a**2*x**2 + 1)/2
 + sqrt(c)*asin(a*x)/(2*a), True))

________________________________________________________________________________________

Giac [B]  time = 1.25445, size = 302, normalized size = 2.8 \begin{align*} -\frac{{\left (240 \, a^{5} c^{\frac{3}{2}} \arctan \left (\frac{\sqrt{-c + \frac{2 \, c}{a x + 1}}}{\sqrt{c}}\right ) \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right ) - \frac{{\left (15 \, a^{5}{\left (c - \frac{2 \, c}{a x + 1}\right )}^{3} c^{2} \sqrt{-c + \frac{2 \, c}{a x + 1}} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right ) + 73 \, a^{5}{\left (c - \frac{2 \, c}{a x + 1}\right )}^{2} c^{3} \sqrt{-c + \frac{2 \, c}{a x + 1}} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right ) + 15 \, a^{5} c^{5} \sqrt{-c + \frac{2 \, c}{a x + 1}} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right ) + 55 \, a^{5} c^{4}{\left (-c + \frac{2 \, c}{a x + 1}\right )}^{\frac{3}{2}} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right )\right )}{\left (a x + 1\right )}^{4}}{c^{4}}\right )}{\left | a \right |}}{192 \, a^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(3/2)/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="giac")

[Out]

-1/192*(240*a^5*c^(3/2)*arctan(sqrt(-c + 2*c/(a*x + 1))/sqrt(c))*sgn(1/(a*x + 1))*sgn(a) - (15*a^5*(c - 2*c/(a
*x + 1))^3*c^2*sqrt(-c + 2*c/(a*x + 1))*sgn(1/(a*x + 1))*sgn(a) + 73*a^5*(c - 2*c/(a*x + 1))^2*c^3*sqrt(-c + 2
*c/(a*x + 1))*sgn(1/(a*x + 1))*sgn(a) + 15*a^5*c^5*sqrt(-c + 2*c/(a*x + 1))*sgn(1/(a*x + 1))*sgn(a) + 55*a^5*c
^4*(-c + 2*c/(a*x + 1))^(3/2)*sgn(1/(a*x + 1))*sgn(a))*(a*x + 1)^4/c^4)*abs(a)/a^7