3.1242 \(\int \frac{e^{-2 \tanh ^{-1}(a x)} \sqrt{c-a^2 c x^2}}{x^3} \, dx\)

Optimal. Leaf size=78 \[ \frac{2 a \sqrt{c-a^2 c x^2}}{x}-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}-\frac{3}{2} a^2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a^2 c x^2}}{\sqrt{c}}\right ) \]

[Out]

-Sqrt[c - a^2*c*x^2]/(2*x^2) + (2*a*Sqrt[c - a^2*c*x^2])/x - (3*a^2*Sqrt[c]*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c
]])/2

________________________________________________________________________________________

Rubi [A]  time = 0.237261, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {6152, 1807, 807, 266, 63, 208} \[ \frac{2 a \sqrt{c-a^2 c x^2}}{x}-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}-\frac{3}{2} a^2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a^2 c x^2}}{\sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a^2*c*x^2]/(E^(2*ArcTanh[a*x])*x^3),x]

[Out]

-Sqrt[c - a^2*c*x^2]/(2*x^2) + (2*a*Sqrt[c - a^2*c*x^2])/x - (3*a^2*Sqrt[c]*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c
]])/2

Rule 6152

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/c^(n/2), Int[(x^m
*(c + d*x^2)^(p + n/2))/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p
] || GtQ[c, 0]) && ILtQ[n/2, 0]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{-2 \tanh ^{-1}(a x)} \sqrt{c-a^2 c x^2}}{x^3} \, dx &=c \int \frac{(1-a x)^2}{x^3 \sqrt{c-a^2 c x^2}} \, dx\\ &=-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}-\frac{1}{2} \int \frac{4 a c-3 a^2 c x}{x^2 \sqrt{c-a^2 c x^2}} \, dx\\ &=-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}+\frac{2 a \sqrt{c-a^2 c x^2}}{x}+\frac{1}{2} \left (3 a^2 c\right ) \int \frac{1}{x \sqrt{c-a^2 c x^2}} \, dx\\ &=-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}+\frac{2 a \sqrt{c-a^2 c x^2}}{x}+\frac{1}{4} \left (3 a^2 c\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c-a^2 c x}} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}+\frac{2 a \sqrt{c-a^2 c x^2}}{x}-\frac{3}{2} \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a^2}-\frac{x^2}{a^2 c}} \, dx,x,\sqrt{c-a^2 c x^2}\right )\\ &=-\frac{\sqrt{c-a^2 c x^2}}{2 x^2}+\frac{2 a \sqrt{c-a^2 c x^2}}{x}-\frac{3}{2} a^2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a^2 c x^2}}{\sqrt{c}}\right )\\ \end{align*}

Mathematica [A]  time = 0.126432, size = 76, normalized size = 0.97 \[ \frac{1}{2} \left (\frac{(4 a x-1) \sqrt{c-a^2 c x^2}}{x^2}-3 a^2 \sqrt{c} \log \left (\sqrt{c} \sqrt{c-a^2 c x^2}+c\right )+3 a^2 \sqrt{c} \log (x)\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - a^2*c*x^2]/(E^(2*ArcTanh[a*x])*x^3),x]

[Out]

(((-1 + 4*a*x)*Sqrt[c - a^2*c*x^2])/x^2 + 3*a^2*Sqrt[c]*Log[x] - 3*a^2*Sqrt[c]*Log[c + Sqrt[c]*Sqrt[c - a^2*c*
x^2]])/2

________________________________________________________________________________________

Maple [B]  time = 0.042, size = 231, normalized size = 3. \begin{align*} 2\,{\frac{a \left ( -{a}^{2}c{x}^{2}+c \right ) ^{3/2}}{cx}}+2\,{a}^{3}x\sqrt{-{a}^{2}c{x}^{2}+c}+2\,{\frac{{a}^{3}c}{\sqrt{{a}^{2}c}}\arctan \left ({\frac{\sqrt{{a}^{2}c}x}{\sqrt{-{a}^{2}c{x}^{2}+c}}} \right ) }-{\frac{3\,{a}^{2}}{2}\sqrt{c}\ln \left ({\frac{1}{x} \left ( 2\,c+2\,\sqrt{c}\sqrt{-{a}^{2}c{x}^{2}+c} \right ) } \right ) }+{\frac{3\,{a}^{2}}{2}\sqrt{-{a}^{2}c{x}^{2}+c}}-2\,{a}^{2}\sqrt{-c{a}^{2} \left ( x+{a}^{-1} \right ) ^{2}+2\,ac \left ( x+{a}^{-1} \right ) }-2\,{\frac{{a}^{3}c}{\sqrt{{a}^{2}c}}\arctan \left ({\frac{\sqrt{{a}^{2}c}x}{\sqrt{-c{a}^{2} \left ( x+{a}^{-1} \right ) ^{2}+2\,ac \left ( x+{a}^{-1} \right ) }}} \right ) }-{\frac{1}{2\,c{x}^{2}} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*c*x^2+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x)

[Out]

2*a/c/x*(-a^2*c*x^2+c)^(3/2)+2*a^3*x*(-a^2*c*x^2+c)^(1/2)+2*a^3*c/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c
*x^2+c)^(1/2))-3/2*c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)*a^2+3/2*(-a^2*c*x^2+c)^(1/2)*a^2-2*a^2*(
-c*a^2*(x+1/a)^2+2*a*c*(x+1/a))^(1/2)-2*a^3*c/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-c*a^2*(x+1/a)^2+2*a*c*(x+
1/a))^(1/2))-1/2/c/x^2*(-a^2*c*x^2+c)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{\sqrt{-a^{2} c x^{2} + c}{\left (a^{2} x^{2} - 1\right )}}{{\left (a x + 1\right )}^{2} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x, algorithm="maxima")

[Out]

-integrate(sqrt(-a^2*c*x^2 + c)*(a^2*x^2 - 1)/((a*x + 1)^2*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 2.35702, size = 339, normalized size = 4.35 \begin{align*} \left [\frac{3 \, a^{2} \sqrt{c} x^{2} \log \left (-\frac{a^{2} c x^{2} + 2 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{c} - 2 \, c}{x^{2}}\right ) + 2 \, \sqrt{-a^{2} c x^{2} + c}{\left (4 \, a x - 1\right )}}{4 \, x^{2}}, -\frac{3 \, a^{2} \sqrt{-c} x^{2} \arctan \left (\frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-c}}{a^{2} c x^{2} - c}\right ) - \sqrt{-a^{2} c x^{2} + c}{\left (4 \, a x - 1\right )}}{2 \, x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x, algorithm="fricas")

[Out]

[1/4*(3*a^2*sqrt(c)*x^2*log(-(a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) + 2*sqrt(-a^2*c*x^2 + c)*
(4*a*x - 1))/x^2, -1/2*(3*a^2*sqrt(-c)*x^2*arctan(sqrt(-a^2*c*x^2 + c)*sqrt(-c)/(a^2*c*x^2 - c)) - sqrt(-a^2*c
*x^2 + c)*(4*a*x - 1))/x^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - \frac{\sqrt{- a^{2} c x^{2} + c}}{a x^{4} + x^{3}}\, dx - \int \frac{a x \sqrt{- a^{2} c x^{2} + c}}{a x^{4} + x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*c*x**2+c)**(1/2)/(a*x+1)**2*(-a**2*x**2+1)/x**3,x)

[Out]

-Integral(-sqrt(-a**2*c*x**2 + c)/(a*x**4 + x**3), x) - Integral(a*x*sqrt(-a**2*c*x**2 + c)/(a*x**4 + x**3), x
)

________________________________________________________________________________________

Giac [B]  time = 1.17133, size = 205, normalized size = 2.63 \begin{align*} \frac{1}{4} \,{\left (\frac{12 \, a c \arctan \left (\frac{\sqrt{-c + \frac{2 \, c}{a x + 1}}}{\sqrt{-c}}\right ) \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right )}{\sqrt{-c}} - \frac{{\left (3 \, \pi a c - 8 \, a c\right )} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right )}{\sqrt{-c}} + \frac{3 \, a c^{2} \sqrt{-c + \frac{2 \, c}{a x + 1}} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right ) - 5 \, a c{\left (-c + \frac{2 \, c}{a x + 1}\right )}^{\frac{3}{2}} \mathrm{sgn}\left (\frac{1}{a x + 1}\right ) \mathrm{sgn}\left (a\right )}{{\left (c - \frac{c}{a x + 1}\right )}^{2}}\right )}{\left | a \right |} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x, algorithm="giac")

[Out]

1/4*(12*a*c*arctan(sqrt(-c + 2*c/(a*x + 1))/sqrt(-c))*sgn(1/(a*x + 1))*sgn(a)/sqrt(-c) - (3*pi*a*c - 8*a*c)*sg
n(1/(a*x + 1))*sgn(a)/sqrt(-c) + (3*a*c^2*sqrt(-c + 2*c/(a*x + 1))*sgn(1/(a*x + 1))*sgn(a) - 5*a*c*(-c + 2*c/(
a*x + 1))^(3/2)*sgn(1/(a*x + 1))*sgn(a))/(c - c/(a*x + 1))^2)*abs(a)