3.1227 \(\int \frac{e^{-\tanh ^{-1}(a x)} (c-a^2 c x^2)^p}{x^2} \, dx\)

Optimal. Leaf size=112 \[ \frac{a \sqrt{1-a^2 x^2} \left (c-a^2 c x^2\right )^p \text{Hypergeometric2F1}\left (1,p+\frac{1}{2},p+\frac{3}{2},1-a^2 x^2\right )}{2 p+1}-\frac{\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \text{Hypergeometric2F1}\left (-\frac{1}{2},\frac{1}{2}-p,\frac{1}{2},a^2 x^2\right )}{x} \]

[Out]

-(((c - a^2*c*x^2)^p*Hypergeometric2F1[-1/2, 1/2 - p, 1/2, a^2*x^2])/(x*(1 - a^2*x^2)^p)) + (a*Sqrt[1 - a^2*x^
2]*(c - a^2*c*x^2)^p*Hypergeometric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2*x^2])/(1 + 2*p)

________________________________________________________________________________________

Rubi [A]  time = 0.174016, antiderivative size = 112, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {6153, 6149, 764, 364, 266, 65} \[ \frac{a \sqrt{1-a^2 x^2} \left (c-a^2 c x^2\right )^p \, _2F_1\left (1,p+\frac{1}{2};p+\frac{3}{2};1-a^2 x^2\right )}{2 p+1}-\frac{\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \, _2F_1\left (-\frac{1}{2},\frac{1}{2}-p;\frac{1}{2};a^2 x^2\right )}{x} \]

Antiderivative was successfully verified.

[In]

Int[(c - a^2*c*x^2)^p/(E^ArcTanh[a*x]*x^2),x]

[Out]

-(((c - a^2*c*x^2)^p*Hypergeometric2F1[-1/2, 1/2 - p, 1/2, a^2*x^2])/(x*(1 - a^2*x^2)^p)) + (a*Sqrt[1 - a^2*x^
2]*(c - a^2*c*x^2)^p*Hypergeometric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2*x^2])/(1 + 2*p)

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6149

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(x^m*(1 -
a^2*x^2)^(p + n/2))/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || G
tQ[c, 0]) && ILtQ[(n - 1)/2, 0] &&  !IntegerQ[p - n/2]

Rule 764

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[f, Int[x^m*(a + c*x^2)^p, x]
, x] + Dist[g, Int[x^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, f, g, p}, x] && IntegerQ[m] &&  !IntegerQ[2
*p]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rubi steps

\begin{align*} \int \frac{e^{-\tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx &=\left (\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \int \frac{e^{-\tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^p}{x^2} \, dx\\ &=\left (\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \int \frac{(1-a x) \left (1-a^2 x^2\right )^{-\frac{1}{2}+p}}{x^2} \, dx\\ &=\left (\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \int \frac{\left (1-a^2 x^2\right )^{-\frac{1}{2}+p}}{x^2} \, dx-\left (a \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \int \frac{\left (1-a^2 x^2\right )^{-\frac{1}{2}+p}}{x} \, dx\\ &=-\frac{\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \, _2F_1\left (-\frac{1}{2},\frac{1}{2}-p;\frac{1}{2};a^2 x^2\right )}{x}-\frac{1}{2} \left (a \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \operatorname{Subst}\left (\int \frac{\left (1-a^2 x\right )^{-\frac{1}{2}+p}}{x} \, dx,x,x^2\right )\\ &=-\frac{\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \, _2F_1\left (-\frac{1}{2},\frac{1}{2}-p;\frac{1}{2};a^2 x^2\right )}{x}+\frac{a \sqrt{1-a^2 x^2} \left (c-a^2 c x^2\right )^p \, _2F_1\left (1,\frac{1}{2}+p;\frac{3}{2}+p;1-a^2 x^2\right )}{1+2 p}\\ \end{align*}

Mathematica [A]  time = 0.0353348, size = 102, normalized size = 0.91 \[ \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\frac{a \left (1-a^2 x^2\right )^{p+\frac{1}{2}} \text{Hypergeometric2F1}\left (1,p+\frac{1}{2},p+\frac{3}{2},1-a^2 x^2\right )}{2 p+1}-\frac{\text{Hypergeometric2F1}\left (-\frac{1}{2},\frac{1}{2}-p,\frac{1}{2},a^2 x^2\right )}{x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(c - a^2*c*x^2)^p/(E^ArcTanh[a*x]*x^2),x]

[Out]

((c - a^2*c*x^2)^p*(-(Hypergeometric2F1[-1/2, 1/2 - p, 1/2, a^2*x^2]/x) + (a*(1 - a^2*x^2)^(1/2 + p)*Hypergeom
etric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2*x^2])/(1 + 2*p)))/(1 - a^2*x^2)^p

________________________________________________________________________________________

Maple [F]  time = 0.419, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( -{a}^{2}c{x}^{2}+c \right ) ^{p}}{ \left ( ax+1 \right ){x}^{2}}\sqrt{-{a}^{2}{x}^{2}+1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x)

[Out]

int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1}{\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/((a*x + 1)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-a^{2} x^{2} + 1}{\left (-a^{2} c x^{2} + c\right )}^{p}}{a x^{3} + x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/(a*x^3 + x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{p}}{x^{2} \left (a x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*c*x**2+c)**p/(a*x+1)*(-a**2*x**2+1)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))*(-c*(a*x - 1)*(a*x + 1))**p/(x**2*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1}{\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/((a*x + 1)*x^2), x)