3.1214 \(\int \frac{e^{-\tanh ^{-1}(a x)}}{(c-a^2 c x^2)^{7/2}} \, dx\)

Optimal. Leaf size=276 \[ \frac{\sqrt{1-a^2 x^2}}{8 a c^3 (1-a x) \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{16 a c^3 (a x+1) \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2}}{32 a c^3 (1-a x)^2 \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{32 a c^3 (a x+1)^2 \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2}}{24 a c^3 (a x+1)^3 \sqrt{c-a^2 c x^2}}+\frac{5 \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{16 a c^3 \sqrt{c-a^2 c x^2}} \]

[Out]

Sqrt[1 - a^2*x^2]/(32*a*c^3*(1 - a*x)^2*Sqrt[c - a^2*c*x^2]) + Sqrt[1 - a^2*x^2]/(8*a*c^3*(1 - a*x)*Sqrt[c - a
^2*c*x^2]) - Sqrt[1 - a^2*x^2]/(24*a*c^3*(1 + a*x)^3*Sqrt[c - a^2*c*x^2]) - (3*Sqrt[1 - a^2*x^2])/(32*a*c^3*(1
 + a*x)^2*Sqrt[c - a^2*c*x^2]) - (3*Sqrt[1 - a^2*x^2])/(16*a*c^3*(1 + a*x)*Sqrt[c - a^2*c*x^2]) + (5*Sqrt[1 -
a^2*x^2]*ArcTanh[a*x])/(16*a*c^3*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.138208, antiderivative size = 276, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {6143, 6140, 44, 207} \[ \frac{\sqrt{1-a^2 x^2}}{8 a c^3 (1-a x) \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{16 a c^3 (a x+1) \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2}}{32 a c^3 (1-a x)^2 \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{32 a c^3 (a x+1)^2 \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2}}{24 a c^3 (a x+1)^3 \sqrt{c-a^2 c x^2}}+\frac{5 \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{16 a c^3 \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^ArcTanh[a*x]*(c - a^2*c*x^2)^(7/2)),x]

[Out]

Sqrt[1 - a^2*x^2]/(32*a*c^3*(1 - a*x)^2*Sqrt[c - a^2*c*x^2]) + Sqrt[1 - a^2*x^2]/(8*a*c^3*(1 - a*x)*Sqrt[c - a
^2*c*x^2]) - Sqrt[1 - a^2*x^2]/(24*a*c^3*(1 + a*x)^3*Sqrt[c - a^2*c*x^2]) - (3*Sqrt[1 - a^2*x^2])/(32*a*c^3*(1
 + a*x)^2*Sqrt[c - a^2*c*x^2]) - (3*Sqrt[1 - a^2*x^2])/(16*a*c^3*(1 + a*x)*Sqrt[c - a^2*c*x^2]) + (5*Sqrt[1 -
a^2*x^2]*ArcTanh[a*x])/(16*a*c^3*Sqrt[c - a^2*c*x^2])

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-\tanh ^{-1}(a x)}}{\left (c-a^2 c x^2\right )^{7/2}} \, dx &=\frac{\sqrt{1-a^2 x^2} \int \frac{e^{-\tanh ^{-1}(a x)}}{\left (1-a^2 x^2\right )^{7/2}} \, dx}{c^3 \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{1}{(1-a x)^3 (1+a x)^4} \, dx}{c^3 \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \left (-\frac{1}{16 (-1+a x)^3}+\frac{1}{8 (-1+a x)^2}+\frac{1}{8 (1+a x)^4}+\frac{3}{16 (1+a x)^3}+\frac{3}{16 (1+a x)^2}-\frac{5}{16 \left (-1+a^2 x^2\right )}\right ) \, dx}{c^3 \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2}}{32 a c^3 (1-a x)^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2}}{8 a c^3 (1-a x) \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2}}{24 a c^3 (1+a x)^3 \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{32 a c^3 (1+a x)^2 \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{16 a c^3 (1+a x) \sqrt{c-a^2 c x^2}}-\frac{\left (5 \sqrt{1-a^2 x^2}\right ) \int \frac{1}{-1+a^2 x^2} \, dx}{16 c^3 \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2}}{32 a c^3 (1-a x)^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2}}{8 a c^3 (1-a x) \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2}}{24 a c^3 (1+a x)^3 \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{32 a c^3 (1+a x)^2 \sqrt{c-a^2 c x^2}}-\frac{3 \sqrt{1-a^2 x^2}}{16 a c^3 (1+a x) \sqrt{c-a^2 c x^2}}+\frac{5 \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{16 a c^3 \sqrt{c-a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0868012, size = 101, normalized size = 0.37 \[ \frac{\sqrt{1-a^2 x^2} \left (-15 a^4 x^4-15 a^3 x^3+25 a^2 x^2+25 a x+15 (a x-1)^2 (a x+1)^3 \tanh ^{-1}(a x)-8\right )}{48 a (a x-1)^2 (a c x+c)^3 \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^ArcTanh[a*x]*(c - a^2*c*x^2)^(7/2)),x]

[Out]

(Sqrt[1 - a^2*x^2]*(-8 + 25*a*x + 25*a^2*x^2 - 15*a^3*x^3 - 15*a^4*x^4 + 15*(-1 + a*x)^2*(1 + a*x)^3*ArcTanh[a
*x]))/(48*a*(-1 + a*x)^2*(c + a*c*x)^3*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.095, size = 238, normalized size = 0.9 \begin{align*} -{\frac{15\,\ln \left ( ax+1 \right ){x}^{5}{a}^{5}-15\,\ln \left ( ax-1 \right ){x}^{5}{a}^{5}+15\,\ln \left ( ax+1 \right ){a}^{4}{x}^{4}-15\,\ln \left ( ax-1 \right ){a}^{4}{x}^{4}-30\,{x}^{4}{a}^{4}-30\,{a}^{3}{x}^{3}\ln \left ( ax+1 \right ) +30\,\ln \left ( ax-1 \right ){x}^{3}{a}^{3}-30\,{x}^{3}{a}^{3}-30\,\ln \left ( ax+1 \right ){a}^{2}{x}^{2}+30\,\ln \left ( ax-1 \right ){a}^{2}{x}^{2}+50\,{a}^{2}{x}^{2}+15\,ax\ln \left ( ax+1 \right ) -15\,\ln \left ( ax-1 \right ) xa+50\,ax+15\,\ln \left ( ax+1 \right ) -15\,\ln \left ( ax-1 \right ) -16}{ \left ( 96\,{a}^{2}{x}^{2}-96 \right ){c}^{4}a \left ( ax+1 \right ) ^{3} \left ( ax-1 \right ) ^{2}}\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(7/2),x)

[Out]

-1/96*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)*(15*ln(a*x+1)*x^5*a^5-15*ln(a*x-1)*x^5*a^5+15*ln(a*x+1)*a^4*x^
4-15*ln(a*x-1)*a^4*x^4-30*x^4*a^4-30*a^3*x^3*ln(a*x+1)+30*ln(a*x-1)*x^3*a^3-30*x^3*a^3-30*ln(a*x+1)*a^2*x^2+30
*ln(a*x-1)*a^2*x^2+50*a^2*x^2+15*a*x*ln(a*x+1)-15*ln(a*x-1)*x*a+50*a*x+15*ln(a*x+1)-15*ln(a*x-1)-16)/(a^2*x^2-
1)/c^4/a/(a*x+1)^3/(a*x-1)^2

________________________________________________________________________________________

Maxima [A]  time = 1.0279, size = 182, normalized size = 0.66 \begin{align*} -\frac{15 \, a^{4} \sqrt{c} x^{4} + 15 \, a^{3} \sqrt{c} x^{3} - 25 \, a^{2} \sqrt{c} x^{2} - 25 \, a \sqrt{c} x + 8 \, \sqrt{c}}{48 \,{\left (a^{6} c^{4} x^{5} + a^{5} c^{4} x^{4} - 2 \, a^{4} c^{4} x^{3} - 2 \, a^{3} c^{4} x^{2} + a^{2} c^{4} x + a c^{4}\right )}} + \frac{5 \, \log \left (a x + 1\right )}{32 \, a c^{\frac{7}{2}}} - \frac{5 \, \log \left (a x - 1\right )}{32 \, a c^{\frac{7}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(7/2),x, algorithm="maxima")

[Out]

-1/48*(15*a^4*sqrt(c)*x^4 + 15*a^3*sqrt(c)*x^3 - 25*a^2*sqrt(c)*x^2 - 25*a*sqrt(c)*x + 8*sqrt(c))/(a^6*c^4*x^5
 + a^5*c^4*x^4 - 2*a^4*c^4*x^3 - 2*a^3*c^4*x^2 + a^2*c^4*x + a*c^4) + 5/32*log(a*x + 1)/(a*c^(7/2)) - 5/32*log
(a*x - 1)/(a*c^(7/2))

________________________________________________________________________________________

Fricas [A]  time = 2.64875, size = 1165, normalized size = 4.22 \begin{align*} \left [\frac{15 \,{\left (a^{7} x^{7} + a^{6} x^{6} - 3 \, a^{5} x^{5} - 3 \, a^{4} x^{4} + 3 \, a^{3} x^{3} + 3 \, a^{2} x^{2} - a x - 1\right )} \sqrt{c} \log \left (-\frac{a^{6} c x^{6} + 5 \, a^{4} c x^{4} - 5 \, a^{2} c x^{2} - 4 \,{\left (a^{3} x^{3} + a x\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} \sqrt{c} - c}{a^{6} x^{6} - 3 \, a^{4} x^{4} + 3 \, a^{2} x^{2} - 1}\right ) - 4 \,{\left (8 \, a^{5} x^{5} - 7 \, a^{4} x^{4} - 31 \, a^{3} x^{3} + 9 \, a^{2} x^{2} + 33 \, a x\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}}{192 \,{\left (a^{8} c^{4} x^{7} + a^{7} c^{4} x^{6} - 3 \, a^{6} c^{4} x^{5} - 3 \, a^{5} c^{4} x^{4} + 3 \, a^{4} c^{4} x^{3} + 3 \, a^{3} c^{4} x^{2} - a^{2} c^{4} x - a c^{4}\right )}}, \frac{15 \,{\left (a^{7} x^{7} + a^{6} x^{6} - 3 \, a^{5} x^{5} - 3 \, a^{4} x^{4} + 3 \, a^{3} x^{3} + 3 \, a^{2} x^{2} - a x - 1\right )} \sqrt{-c} \arctan \left (\frac{2 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} a \sqrt{-c} x}{a^{4} c x^{4} - c}\right ) - 2 \,{\left (8 \, a^{5} x^{5} - 7 \, a^{4} x^{4} - 31 \, a^{3} x^{3} + 9 \, a^{2} x^{2} + 33 \, a x\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}}{96 \,{\left (a^{8} c^{4} x^{7} + a^{7} c^{4} x^{6} - 3 \, a^{6} c^{4} x^{5} - 3 \, a^{5} c^{4} x^{4} + 3 \, a^{4} c^{4} x^{3} + 3 \, a^{3} c^{4} x^{2} - a^{2} c^{4} x - a c^{4}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(7/2),x, algorithm="fricas")

[Out]

[1/192*(15*(a^7*x^7 + a^6*x^6 - 3*a^5*x^5 - 3*a^4*x^4 + 3*a^3*x^3 + 3*a^2*x^2 - a*x - 1)*sqrt(c)*log(-(a^6*c*x
^6 + 5*a^4*c*x^4 - 5*a^2*c*x^2 - 4*(a^3*x^3 + a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*sqrt(c) - c)/(a^6*x
^6 - 3*a^4*x^4 + 3*a^2*x^2 - 1)) - 4*(8*a^5*x^5 - 7*a^4*x^4 - 31*a^3*x^3 + 9*a^2*x^2 + 33*a*x)*sqrt(-a^2*c*x^2
 + c)*sqrt(-a^2*x^2 + 1))/(a^8*c^4*x^7 + a^7*c^4*x^6 - 3*a^6*c^4*x^5 - 3*a^5*c^4*x^4 + 3*a^4*c^4*x^3 + 3*a^3*c
^4*x^2 - a^2*c^4*x - a*c^4), 1/96*(15*(a^7*x^7 + a^6*x^6 - 3*a^5*x^5 - 3*a^4*x^4 + 3*a^3*x^3 + 3*a^2*x^2 - a*x
 - 1)*sqrt(-c)*arctan(2*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*a*sqrt(-c)*x/(a^4*c*x^4 - c)) - 2*(8*a^5*x^5 -
 7*a^4*x^4 - 31*a^3*x^3 + 9*a^2*x^2 + 33*a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1))/(a^8*c^4*x^7 + a^7*c^4*
x^6 - 3*a^6*c^4*x^5 - 3*a^5*c^4*x^4 + 3*a^4*c^4*x^3 + 3*a^3*c^4*x^2 - a^2*c^4*x - a*c^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}{\left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{7}{2}} \left (a x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a**2*x**2+1)**(1/2)/(-a**2*c*x**2+c)**(7/2),x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))/((-c*(a*x - 1)*(a*x + 1))**(7/2)*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{7}{2}}{\left (a x + 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)/((-a^2*c*x^2 + c)^(7/2)*(a*x + 1)), x)