3.121 \(\int e^{\frac{1}{3} \tanh ^{-1}(x)} x^2 \, dx\)

Optimal. Leaf size=245 \[ -\frac{1}{3} (1-x)^{5/6} x (x+1)^{7/6}-\frac{1}{18} (1-x)^{5/6} (x+1)^{7/6}-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{x+1}-\frac{19 \log \left (\frac{\sqrt [3]{1-x}}{\sqrt [3]{x+1}}-\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{x+1}}+1\right )}{108 \sqrt{3}}+\frac{19 \log \left (\frac{\sqrt [3]{1-x}}{\sqrt [3]{x+1}}+\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{x+1}}+1\right )}{108 \sqrt{3}}-\frac{19}{81} \tan ^{-1}\left (\frac{\sqrt [6]{1-x}}{\sqrt [6]{x+1}}\right )+\frac{19}{162} \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{x+1}}\right )-\frac{19}{162} \tan ^{-1}\left (\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{x+1}}+\sqrt{3}\right ) \]

[Out]

(-19*(1 - x)^(5/6)*(1 + x)^(1/6))/54 - ((1 - x)^(5/6)*(1 + x)^(7/6))/18 - ((1 - x)^(5/6)*x*(1 + x)^(7/6))/3 -
(19*ArcTan[(1 - x)^(1/6)/(1 + x)^(1/6)])/81 + (19*ArcTan[Sqrt[3] - (2*(1 - x)^(1/6))/(1 + x)^(1/6)])/162 - (19
*ArcTan[Sqrt[3] + (2*(1 - x)^(1/6))/(1 + x)^(1/6)])/162 - (19*Log[1 + (1 - x)^(1/3)/(1 + x)^(1/3) - (Sqrt[3]*(
1 - x)^(1/6))/(1 + x)^(1/6)])/(108*Sqrt[3]) + (19*Log[1 + (1 - x)^(1/3)/(1 + x)^(1/3) + (Sqrt[3]*(1 - x)^(1/6)
)/(1 + x)^(1/6)])/(108*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.385404, antiderivative size = 245, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 12, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 1., Rules used = {6126, 90, 80, 50, 63, 331, 295, 634, 618, 204, 628, 203} \[ -\frac{1}{3} (1-x)^{5/6} x (x+1)^{7/6}-\frac{1}{18} (1-x)^{5/6} (x+1)^{7/6}-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{x+1}-\frac{19 \log \left (\frac{\sqrt [3]{1-x}}{\sqrt [3]{x+1}}-\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{x+1}}+1\right )}{108 \sqrt{3}}+\frac{19 \log \left (\frac{\sqrt [3]{1-x}}{\sqrt [3]{x+1}}+\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{x+1}}+1\right )}{108 \sqrt{3}}-\frac{19}{81} \tan ^{-1}\left (\frac{\sqrt [6]{1-x}}{\sqrt [6]{x+1}}\right )+\frac{19}{162} \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{x+1}}\right )-\frac{19}{162} \tan ^{-1}\left (\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{x+1}}+\sqrt{3}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcTanh[x]/3)*x^2,x]

[Out]

(-19*(1 - x)^(5/6)*(1 + x)^(1/6))/54 - ((1 - x)^(5/6)*(1 + x)^(7/6))/18 - ((1 - x)^(5/6)*x*(1 + x)^(7/6))/3 -
(19*ArcTan[(1 - x)^(1/6)/(1 + x)^(1/6)])/81 + (19*ArcTan[Sqrt[3] - (2*(1 - x)^(1/6))/(1 + x)^(1/6)])/162 - (19
*ArcTan[Sqrt[3] + (2*(1 - x)^(1/6))/(1 + x)^(1/6)])/162 - (19*Log[1 + (1 - x)^(1/3)/(1 + x)^(1/3) - (Sqrt[3]*(
1 - x)^(1/6))/(1 + x)^(1/6)])/(108*Sqrt[3]) + (19*Log[1 + (1 - x)^(1/3)/(1 + x)^(1/3) + (Sqrt[3]*(1 - x)^(1/6)
)/(1 + x)^(1/6)])/(108*Sqrt[3])

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 295

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/
b, n]], k, u}, Simp[u = Int[(r*Cos[((2*k - 1)*m*Pi)/n] - s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(
(2*k - 1)*Pi)/n]*x + s^2*x^2), x] + Int[(r*Cos[((2*k - 1)*m*Pi)/n] + s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 +
 2*r*s*Cos[((2*k - 1)*Pi)/n]*x + s^2*x^2), x]; (2*(-1)^(m/2)*r^(m + 2)*Int[1/(r^2 + s^2*x^2), x])/(a*n*s^m) +
Dist[(2*r^(m + 1))/(a*n*s^m), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] &&
IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int e^{\frac{1}{3} \tanh ^{-1}(x)} x^2 \, dx &=\int \frac{x^2 \sqrt [6]{1+x}}{\sqrt [6]{1-x}} \, dx\\ &=-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{1}{3} \int \frac{\left (-1-\frac{x}{3}\right ) \sqrt [6]{1+x}}{\sqrt [6]{1-x}} \, dx\\ &=-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}+\frac{19}{54} \int \frac{\sqrt [6]{1+x}}{\sqrt [6]{1-x}} \, dx\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}+\frac{19}{162} \int \frac{1}{\sqrt [6]{1-x} (1+x)^{5/6}} \, dx\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{19}{27} \operatorname{Subst}\left (\int \frac{x^4}{\left (2-x^6\right )^{5/6}} \, dx,x,\sqrt [6]{1-x}\right )\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{19}{27} \operatorname{Subst}\left (\int \frac{x^4}{1+x^6} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{19}{81} \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19}{81} \operatorname{Subst}\left (\int \frac{-\frac{1}{2}+\frac{\sqrt{3} x}{2}}{1-\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19}{81} \operatorname{Subst}\left (\int \frac{-\frac{1}{2}-\frac{\sqrt{3} x}{2}}{1+\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{19}{81} \tan ^{-1}\left (\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19}{324} \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19}{324} \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19 \operatorname{Subst}\left (\int \frac{-\sqrt{3}+2 x}{1-\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )}{108 \sqrt{3}}+\frac{19 \operatorname{Subst}\left (\int \frac{\sqrt{3}+2 x}{1+\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )}{108 \sqrt{3}}\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{19}{81} \tan ^{-1}\left (\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19 \log \left (1+\frac{\sqrt [3]{1-x}}{\sqrt [3]{1+x}}-\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )}{108 \sqrt{3}}+\frac{19 \log \left (1+\frac{\sqrt [3]{1-x}}{\sqrt [3]{1+x}}+\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )}{108 \sqrt{3}}+\frac{19}{162} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,-\sqrt{3}+\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )+\frac{19}{162} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,\sqrt{3}+\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )\\ &=-\frac{19}{54} (1-x)^{5/6} \sqrt [6]{1+x}-\frac{1}{18} (1-x)^{5/6} (1+x)^{7/6}-\frac{1}{3} (1-x)^{5/6} x (1+x)^{7/6}-\frac{19}{81} \tan ^{-1}\left (\frac{\sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )+\frac{19}{162} \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19}{162} \tan ^{-1}\left (\sqrt{3}+\frac{2 \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )-\frac{19 \log \left (1+\frac{\sqrt [3]{1-x}}{\sqrt [3]{1+x}}-\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )}{108 \sqrt{3}}+\frac{19 \log \left (1+\frac{\sqrt [3]{1-x}}{\sqrt [3]{1+x}}+\frac{\sqrt{3} \sqrt [6]{1-x}}{\sqrt [6]{1+x}}\right )}{108 \sqrt{3}}\\ \end{align*}

Mathematica [C]  time = 0.0272581, size = 59, normalized size = 0.24 \[ -\frac{1}{90} (1-x)^{5/6} \left (38 \sqrt [6]{2} \text{Hypergeometric2F1}\left (-\frac{1}{6},\frac{5}{6},\frac{11}{6},\frac{1-x}{2}\right )+5 \sqrt [6]{x+1} \left (6 x^2+7 x+1\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcTanh[x]/3)*x^2,x]

[Out]

-((1 - x)^(5/6)*(5*(1 + x)^(1/6)*(1 + 7*x + 6*x^2) + 38*2^(1/6)*Hypergeometric2F1[-1/6, 5/6, 11/6, (1 - x)/2])
)/90

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{{(1+x){\frac{1}{\sqrt{-{x}^{2}+1}}}}}{x}^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1+x)/(-x^2+1)^(1/2))^(1/3)*x^2,x)

[Out]

int(((1+x)/(-x^2+1)^(1/2))^(1/3)*x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \left (\frac{x + 1}{\sqrt{-x^{2} + 1}}\right )^{\frac{1}{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x^2+1)^(1/2))^(1/3)*x^2,x, algorithm="maxima")

[Out]

integrate(x^2*((x + 1)/sqrt(-x^2 + 1))^(1/3), x)

________________________________________________________________________________________

Fricas [A]  time = 1.93252, size = 882, normalized size = 3.6 \begin{align*} \frac{19}{324} \, \sqrt{3} \log \left (1444 \, \sqrt{3} \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}} + 1444 \, \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{2}{3}} + 1444\right ) - \frac{19}{324} \, \sqrt{3} \log \left (-1444 \, \sqrt{3} \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}} + 1444 \, \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{2}{3}} + 1444\right ) + \frac{1}{54} \,{\left (18 \, x^{3} + 3 \, x^{2} + x - 22\right )} \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}} - \frac{19}{81} \, \arctan \left (\sqrt{3} + \frac{1}{19} \, \sqrt{-1444 \, \sqrt{3} \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}} + 1444 \, \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{2}{3}} + 1444} - 2 \, \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}}\right ) - \frac{19}{81} \, \arctan \left (-\sqrt{3} + 2 \, \sqrt{\sqrt{3} \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}} + \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{2}{3}} + 1} - 2 \, \left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}}\right ) + \frac{19}{81} \, \arctan \left (\left (-\frac{\sqrt{-x^{2} + 1}}{x - 1}\right )^{\frac{1}{3}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x^2+1)^(1/2))^(1/3)*x^2,x, algorithm="fricas")

[Out]

19/324*sqrt(3)*log(1444*sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) + 1444*(-sqrt(-x^2 + 1)/(x - 1))^(2/3) + 1444)
 - 19/324*sqrt(3)*log(-1444*sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) + 1444*(-sqrt(-x^2 + 1)/(x - 1))^(2/3) + 1
444) + 1/54*(18*x^3 + 3*x^2 + x - 22)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) - 19/81*arctan(sqrt(3) + 1/19*sqrt(-1444
*sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) + 1444*(-sqrt(-x^2 + 1)/(x - 1))^(2/3) + 1444) - 2*(-sqrt(-x^2 + 1)/(
x - 1))^(1/3)) - 19/81*arctan(-sqrt(3) + 2*sqrt(sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) + (-sqrt(-x^2 + 1)/(x
- 1))^(2/3) + 1) - 2*(-sqrt(-x^2 + 1)/(x - 1))^(1/3)) + 19/81*arctan((-sqrt(-x^2 + 1)/(x - 1))^(1/3))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x**2+1)**(1/2))**(1/3)*x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \left (\frac{x + 1}{\sqrt{-x^{2} + 1}}\right )^{\frac{1}{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x^2+1)^(1/2))^(1/3)*x^2,x, algorithm="giac")

[Out]

integrate(x^2*((x + 1)/sqrt(-x^2 + 1))^(1/3), x)