3.1203 \(\int e^{-\tanh ^{-1}(a x)} x \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=74 \[ \frac{x^2 \sqrt{c-a^2 c x^2}}{2 \sqrt{1-a^2 x^2}}-\frac{a x^3 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-a^2 x^2}} \]

[Out]

(x^2*Sqrt[c - a^2*c*x^2])/(2*Sqrt[1 - a^2*x^2]) - (a*x^3*Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.130159, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {6153, 6150, 43} \[ \frac{x^2 \sqrt{c-a^2 c x^2}}{2 \sqrt{1-a^2 x^2}}-\frac{a x^3 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[c - a^2*c*x^2])/E^ArcTanh[a*x],x]

[Out]

(x^2*Sqrt[c - a^2*c*x^2])/(2*Sqrt[1 - a^2*x^2]) - (a*x^3*Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - a^2*x^2])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{-\tanh ^{-1}(a x)} x \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{-\tanh ^{-1}(a x)} x \sqrt{1-a^2 x^2} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int x (1-a x) \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \left (x-a x^2\right ) \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{x^2 \sqrt{c-a^2 c x^2}}{2 \sqrt{1-a^2 x^2}}-\frac{a x^3 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0218962, size = 42, normalized size = 0.57 \[ -\frac{x^2 (2 a x-3) \sqrt{c-a^2 c x^2}}{6 \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[c - a^2*c*x^2])/E^ArcTanh[a*x],x]

[Out]

-(x^2*(-3 + 2*a*x)*Sqrt[c - a^2*c*x^2])/(6*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.028, size = 51, normalized size = 0.7 \begin{align*}{\frac{{x}^{2} \left ( 2\,ax-3 \right ) }{ \left ( 6\,ax-6 \right ) \left ( ax+1 \right ) }\sqrt{-{a}^{2}c{x}^{2}+c}\sqrt{-{a}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x)

[Out]

1/6*x^2*(2*a*x-3)*(-a^2*c*x^2+c)^(1/2)*(-a^2*x^2+1)^(1/2)/(a*x-1)/(a*x+1)

________________________________________________________________________________________

Maxima [A]  time = 1.00856, size = 55, normalized size = 0.74 \begin{align*} -\frac{{\left (2 \, a \sqrt{c} x^{3} - 3 \, \sqrt{c} x^{2}\right )}{\left (a x + 1\right )}{\left (a x - 1\right )}}{6 \,{\left (a^{2} x^{2} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-1/6*(2*a*sqrt(c)*x^3 - 3*sqrt(c)*x^2)*(a*x + 1)*(a*x - 1)/(a^2*x^2 - 1)

________________________________________________________________________________________

Fricas [A]  time = 2.39566, size = 104, normalized size = 1.41 \begin{align*} \frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}{\left (2 \, a x^{3} - 3 \, x^{2}\right )}}{6 \,{\left (a^{2} x^{2} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*(2*a*x^3 - 3*x^2)/(a^2*x^2 - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )}}{a x + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a**2*c*x**2+c)**(1/2)/(a*x+1)*(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x*sqrt(-(a*x - 1)*(a*x + 1))*sqrt(-c*(a*x - 1)*(a*x + 1))/(a*x + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} x}{a x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x/(a*x + 1), x)