3.1201 \(\int e^{-\tanh ^{-1}(a x)} x^m \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=83 \[ \frac{x^{m+1} \sqrt{c-a^2 c x^2}}{(m+1) \sqrt{1-a^2 x^2}}-\frac{a x^{m+2} \sqrt{c-a^2 c x^2}}{(m+2) \sqrt{1-a^2 x^2}} \]

[Out]

(x^(1 + m)*Sqrt[c - a^2*c*x^2])/((1 + m)*Sqrt[1 - a^2*x^2]) - (a*x^(2 + m)*Sqrt[c - a^2*c*x^2])/((2 + m)*Sqrt[
1 - a^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.177692, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {6153, 6150, 43} \[ \frac{x^{m+1} \sqrt{c-a^2 c x^2}}{(m+1) \sqrt{1-a^2 x^2}}-\frac{a x^{m+2} \sqrt{c-a^2 c x^2}}{(m+2) \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^m*Sqrt[c - a^2*c*x^2])/E^ArcTanh[a*x],x]

[Out]

(x^(1 + m)*Sqrt[c - a^2*c*x^2])/((1 + m)*Sqrt[1 - a^2*x^2]) - (a*x^(2 + m)*Sqrt[c - a^2*c*x^2])/((2 + m)*Sqrt[
1 - a^2*x^2])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{-\tanh ^{-1}(a x)} x^m \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{-\tanh ^{-1}(a x)} x^m \sqrt{1-a^2 x^2} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int x^m (1-a x) \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \left (x^m-a x^{1+m}\right ) \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{x^{1+m} \sqrt{c-a^2 c x^2}}{(1+m) \sqrt{1-a^2 x^2}}-\frac{a x^{2+m} \sqrt{c-a^2 c x^2}}{(2+m) \sqrt{1-a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0447579, size = 50, normalized size = 0.6 \[ \frac{x^{m+1} \sqrt{c-a^2 c x^2} \left (\frac{1}{m+1}-\frac{a x}{m+2}\right )}{\sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^m*Sqrt[c - a^2*c*x^2])/E^ArcTanh[a*x],x]

[Out]

(x^(1 + m)*((1 + m)^(-1) - (a*x)/(2 + m))*Sqrt[c - a^2*c*x^2])/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 68, normalized size = 0.8 \begin{align*}{\frac{{x}^{1+m} \left ( amx+ax-m-2 \right ) }{ \left ( 2+m \right ) \left ( 1+m \right ) \left ( ax-1 \right ) \left ( ax+1 \right ) }\sqrt{-{a}^{2}c{x}^{2}+c}\sqrt{-{a}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x)

[Out]

x^(1+m)*(a*m*x+a*x-m-2)*(-a^2*c*x^2+c)^(1/2)*(-a^2*x^2+1)^(1/2)/(2+m)/(1+m)/(a*x-1)/(a*x+1)

________________________________________________________________________________________

Maxima [A]  time = 1.04055, size = 85, normalized size = 1.02 \begin{align*} -\frac{{\left (a \sqrt{c}{\left (m + 1\right )} x^{2} - \sqrt{c}{\left (m + 2\right )} x\right )}{\left (a x + 1\right )}{\left (a x - 1\right )} x^{m}}{{\left (m^{2} + 3 \, m + 2\right )} a^{2} x^{2} - m^{2} - 3 \, m - 2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-(a*sqrt(c)*(m + 1)*x^2 - sqrt(c)*(m + 2)*x)*(a*x + 1)*(a*x - 1)*x^m/((m^2 + 3*m + 2)*a^2*x^2 - m^2 - 3*m - 2)

________________________________________________________________________________________

Fricas [A]  time = 2.65412, size = 166, normalized size = 2. \begin{align*} \frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}{\left ({\left (a m + a\right )} x^{2} -{\left (m + 2\right )} x\right )} x^{m}}{{\left (a^{2} m^{2} + 3 \, a^{2} m + 2 \, a^{2}\right )} x^{2} - m^{2} - 3 \, m - 2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*((a*m + a)*x^2 - (m + 2)*x)*x^m/((a^2*m^2 + 3*a^2*m + 2*a^2)*x^2 - m^2
 - 3*m - 2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} \sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )}}{a x + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*(-a**2*c*x**2+c)**(1/2)/(a*x+1)*(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x**m*sqrt(-(a*x - 1)*(a*x + 1))*sqrt(-c*(a*x - 1)*(a*x + 1))/(a*x + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} x^{m}}{a x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x^m/(a*x + 1), x)