3.1178 \(\int e^{3 \tanh ^{-1}(a x)} (c-a^2 c x^2)^p \, dx\)

Optimal. Leaf size=85 \[ \frac{2^{p+\frac{5}{2}} (1-a x)^{p-\frac{1}{2}} \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \text{Hypergeometric2F1}\left (-p-\frac{3}{2},p-\frac{1}{2},p+\frac{1}{2},\frac{1}{2} (1-a x)\right )}{a (1-2 p)} \]

[Out]

(2^(5/2 + p)*(1 - a*x)^(-1/2 + p)*(c - a^2*c*x^2)^p*Hypergeometric2F1[-3/2 - p, -1/2 + p, 1/2 + p, (1 - a*x)/2
])/(a*(1 - 2*p)*(1 - a^2*x^2)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.0740719, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {6143, 6140, 69} \[ \frac{2^{p+\frac{5}{2}} (1-a x)^{p-\frac{1}{2}} \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \, _2F_1\left (-p-\frac{3}{2},p-\frac{1}{2};p+\frac{1}{2};\frac{1}{2} (1-a x)\right )}{a (1-2 p)} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*(c - a^2*c*x^2)^p,x]

[Out]

(2^(5/2 + p)*(1 - a*x)^(-1/2 + p)*(c - a^2*c*x^2)^p*Hypergeometric2F1[-3/2 - p, -1/2 + p, 1/2 + p, (1 - a*x)/2
])/(a*(1 - 2*p)*(1 - a^2*x^2)^p)

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int e^{3 \tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^p \, dx &=\left (\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \int e^{3 \tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^p \, dx\\ &=\left (\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p\right ) \int (1-a x)^{-\frac{3}{2}+p} (1+a x)^{\frac{3}{2}+p} \, dx\\ &=\frac{2^{\frac{5}{2}+p} (1-a x)^{-\frac{1}{2}+p} \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \, _2F_1\left (-\frac{3}{2}-p,-\frac{1}{2}+p;\frac{1}{2}+p;\frac{1}{2} (1-a x)\right )}{a (1-2 p)}\\ \end{align*}

Mathematica [A]  time = 0.0291076, size = 83, normalized size = 0.98 \[ \frac{2^{p+\frac{5}{2}} (1-a x)^{p-\frac{1}{2}} \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \text{Hypergeometric2F1}\left (-p-\frac{3}{2},p-\frac{1}{2},p+\frac{1}{2},\frac{1}{2} (1-a x)\right )}{a-2 a p} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a*x])*(c - a^2*c*x^2)^p,x]

[Out]

(2^(5/2 + p)*(1 - a*x)^(-1/2 + p)*(c - a^2*c*x^2)^p*Hypergeometric2F1[-3/2 - p, -1/2 + p, 1/2 + p, (1 - a*x)/2
])/((a - 2*a*p)*(1 - a^2*x^2)^p)

________________________________________________________________________________________

Maple [F]  time = 0.395, size = 0, normalized size = 0. \begin{align*} \int{ \left ( ax+1 \right ) ^{3} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{p} \left ( -{a}^{2}{x}^{2}+1 \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^p,x)

[Out]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )}^{3}{\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^p,x, algorithm="maxima")

[Out]

integrate((a*x + 1)^3*(-a^2*c*x^2 + c)^p/(-a^2*x^2 + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-a^{2} x^{2} + 1}{\left (a x + 1\right )}{\left (-a^{2} c x^{2} + c\right )}^{p}}{a^{2} x^{2} - 2 \, a x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^p,x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*(a*x + 1)*(-a^2*c*x^2 + c)^p/(a^2*x^2 - 2*a*x + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{p} \left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(-a**2*c*x**2+c)**p,x)

[Out]

Integral((-c*(a*x - 1)*(a*x + 1))**p*(a*x + 1)**3/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )}^{3}{\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^p,x, algorithm="giac")

[Out]

integrate((a*x + 1)^3*(-a^2*c*x^2 + c)^p/(-a^2*x^2 + 1)^(3/2), x)