3.1164 \(\int \frac{e^{3 \tanh ^{-1}(a x)} \sqrt{c-a^2 c x^2}}{x^5} \, dx\)

Optimal. Leaf size=223 \[ -\frac{4 a^3 \sqrt{c-a^2 c x^2}}{x \sqrt{1-a^2 x^2}}-\frac{2 a^2 \sqrt{c-a^2 c x^2}}{x^2 \sqrt{1-a^2 x^2}}-\frac{a \sqrt{c-a^2 c x^2}}{x^3 \sqrt{1-a^2 x^2}}-\frac{\sqrt{c-a^2 c x^2}}{4 x^4 \sqrt{1-a^2 x^2}}+\frac{4 a^4 \log (x) \sqrt{c-a^2 c x^2}}{\sqrt{1-a^2 x^2}}-\frac{4 a^4 \sqrt{c-a^2 c x^2} \log (1-a x)}{\sqrt{1-a^2 x^2}} \]

[Out]

-Sqrt[c - a^2*c*x^2]/(4*x^4*Sqrt[1 - a^2*x^2]) - (a*Sqrt[c - a^2*c*x^2])/(x^3*Sqrt[1 - a^2*x^2]) - (2*a^2*Sqrt
[c - a^2*c*x^2])/(x^2*Sqrt[1 - a^2*x^2]) - (4*a^3*Sqrt[c - a^2*c*x^2])/(x*Sqrt[1 - a^2*x^2]) + (4*a^4*Sqrt[c -
 a^2*c*x^2]*Log[x])/Sqrt[1 - a^2*x^2] - (4*a^4*Sqrt[c - a^2*c*x^2]*Log[1 - a*x])/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

Rubi [A]  time = 0.220376, antiderivative size = 223, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {6153, 6150, 88} \[ -\frac{4 a^3 \sqrt{c-a^2 c x^2}}{x \sqrt{1-a^2 x^2}}-\frac{2 a^2 \sqrt{c-a^2 c x^2}}{x^2 \sqrt{1-a^2 x^2}}-\frac{a \sqrt{c-a^2 c x^2}}{x^3 \sqrt{1-a^2 x^2}}-\frac{\sqrt{c-a^2 c x^2}}{4 x^4 \sqrt{1-a^2 x^2}}+\frac{4 a^4 \log (x) \sqrt{c-a^2 c x^2}}{\sqrt{1-a^2 x^2}}-\frac{4 a^4 \sqrt{c-a^2 c x^2} \log (1-a x)}{\sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(3*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2])/x^5,x]

[Out]

-Sqrt[c - a^2*c*x^2]/(4*x^4*Sqrt[1 - a^2*x^2]) - (a*Sqrt[c - a^2*c*x^2])/(x^3*Sqrt[1 - a^2*x^2]) - (2*a^2*Sqrt
[c - a^2*c*x^2])/(x^2*Sqrt[1 - a^2*x^2]) - (4*a^3*Sqrt[c - a^2*c*x^2])/(x*Sqrt[1 - a^2*x^2]) + (4*a^4*Sqrt[c -
 a^2*c*x^2]*Log[x])/Sqrt[1 - a^2*x^2] - (4*a^4*Sqrt[c - a^2*c*x^2]*Log[1 - a*x])/Sqrt[1 - a^2*x^2]

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rubi steps

\begin{align*} \int \frac{e^{3 \tanh ^{-1}(a x)} \sqrt{c-a^2 c x^2}}{x^5} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int \frac{e^{3 \tanh ^{-1}(a x)} \sqrt{1-a^2 x^2}}{x^5} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \frac{(1+a x)^2}{x^5 (1-a x)} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \left (\frac{1}{x^5}+\frac{3 a}{x^4}+\frac{4 a^2}{x^3}+\frac{4 a^3}{x^2}+\frac{4 a^4}{x}-\frac{4 a^5}{-1+a x}\right ) \, dx}{\sqrt{1-a^2 x^2}}\\ &=-\frac{\sqrt{c-a^2 c x^2}}{4 x^4 \sqrt{1-a^2 x^2}}-\frac{a \sqrt{c-a^2 c x^2}}{x^3 \sqrt{1-a^2 x^2}}-\frac{2 a^2 \sqrt{c-a^2 c x^2}}{x^2 \sqrt{1-a^2 x^2}}-\frac{4 a^3 \sqrt{c-a^2 c x^2}}{x \sqrt{1-a^2 x^2}}+\frac{4 a^4 \sqrt{c-a^2 c x^2} \log (x)}{\sqrt{1-a^2 x^2}}-\frac{4 a^4 \sqrt{c-a^2 c x^2} \log (1-a x)}{\sqrt{1-a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0534722, size = 79, normalized size = 0.35 \[ \frac{\sqrt{c-a^2 c x^2} \left (-\frac{2 a^2}{x^2}-\frac{4 a^3}{x}+4 a^4 \log (x)-4 a^4 \log (1-a x)-\frac{a}{x^3}-\frac{1}{4 x^4}\right )}{\sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(3*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2])/x^5,x]

[Out]

(Sqrt[c - a^2*c*x^2]*(-1/(4*x^4) - a/x^3 - (2*a^2)/x^2 - (4*a^3)/x + 4*a^4*Log[x] - 4*a^4*Log[1 - a*x]))/Sqrt[
1 - a^2*x^2]

________________________________________________________________________________________

Maple [A]  time = 0.093, size = 89, normalized size = 0.4 \begin{align*} -{\frac{16\,{a}^{4}\ln \left ( x \right ){x}^{4}-16\,\ln \left ( ax-1 \right ){a}^{4}{x}^{4}-16\,{x}^{3}{a}^{3}-8\,{a}^{2}{x}^{2}-4\,ax-1}{ \left ( 4\,{a}^{2}{x}^{2}-4 \right ){x}^{4}}\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^(1/2)/x^5,x)

[Out]

-1/4*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)*(16*a^4*ln(x)*x^4-16*ln(a*x-1)*a^4*x^4-16*x^3*a^3-8*a^2*x^2-4*a
*x-1)/(a^2*x^2-1)/x^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^(1/2)/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.29985, size = 1076, normalized size = 4.83 \begin{align*} \left [\frac{8 \,{\left (a^{6} x^{6} - a^{4} x^{4}\right )} \sqrt{c} \log \left (-\frac{4 \, a^{5} c x^{5} -{\left (2 \, a^{6} - 4 \, a^{5} + 6 \, a^{4} - 4 \, a^{3} + a^{2}\right )} c x^{6} -{\left (4 \, a^{4} + 4 \, a^{3} - 6 \, a^{2} + 4 \, a - 1\right )} c x^{4} + 5 \, a^{2} c x^{2} - 4 \, a c x +{\left (4 \, a^{3} x^{3} -{\left (4 \, a^{3} - 6 \, a^{2} + 4 \, a - 1\right )} x^{4} - 6 \, a^{2} x^{2} + 4 \, a x - 1\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} \sqrt{c} + c}{a^{4} x^{6} - 2 \, a^{3} x^{5} + 2 \, a x^{3} - x^{2}}\right ) +{\left (16 \, a^{3} x^{3} -{\left (16 \, a^{3} + 8 \, a^{2} + 4 \, a + 1\right )} x^{4} + 8 \, a^{2} x^{2} + 4 \, a x + 1\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}}{4 \,{\left (a^{2} x^{6} - x^{4}\right )}}, -\frac{16 \,{\left (a^{6} x^{6} - a^{4} x^{4}\right )} \sqrt{-c} \arctan \left (-\frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}{\left ({\left (2 \, a^{2} - 2 \, a + 1\right )} x^{2} - 2 \, a x + 1\right )} \sqrt{-c}}{2 \, a^{3} c x^{3} -{\left (2 \, a^{3} - a^{2}\right )} c x^{4} -{\left (a^{2} - 2 \, a + 1\right )} c x^{2} - 2 \, a c x + c}\right ) -{\left (16 \, a^{3} x^{3} -{\left (16 \, a^{3} + 8 \, a^{2} + 4 \, a + 1\right )} x^{4} + 8 \, a^{2} x^{2} + 4 \, a x + 1\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1}}{4 \,{\left (a^{2} x^{6} - x^{4}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^(1/2)/x^5,x, algorithm="fricas")

[Out]

[1/4*(8*(a^6*x^6 - a^4*x^4)*sqrt(c)*log(-(4*a^5*c*x^5 - (2*a^6 - 4*a^5 + 6*a^4 - 4*a^3 + a^2)*c*x^6 - (4*a^4 +
 4*a^3 - 6*a^2 + 4*a - 1)*c*x^4 + 5*a^2*c*x^2 - 4*a*c*x + (4*a^3*x^3 - (4*a^3 - 6*a^2 + 4*a - 1)*x^4 - 6*a^2*x
^2 + 4*a*x - 1)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*sqrt(c) + c)/(a^4*x^6 - 2*a^3*x^5 + 2*a*x^3 - x^2)) +
(16*a^3*x^3 - (16*a^3 + 8*a^2 + 4*a + 1)*x^4 + 8*a^2*x^2 + 4*a*x + 1)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1))
/(a^2*x^6 - x^4), -1/4*(16*(a^6*x^6 - a^4*x^4)*sqrt(-c)*arctan(-sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*((2*a^
2 - 2*a + 1)*x^2 - 2*a*x + 1)*sqrt(-c)/(2*a^3*c*x^3 - (2*a^3 - a^2)*c*x^4 - (a^2 - 2*a + 1)*c*x^2 - 2*a*c*x +
c)) - (16*a^3*x^3 - (16*a^3 + 8*a^2 + 4*a + 1)*x^4 + 8*a^2*x^2 + 4*a*x + 1)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2
 + 1))/(a^2*x^6 - x^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x + 1\right )^{3}}{x^{5} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(-a**2*c*x**2+c)**(1/2)/x**5,x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x + 1)**3/(x**5*(-(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c}{\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a^2*c*x^2+c)^(1/2)/x^5,x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*(a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*x^5), x)