3.115 \(\int \frac{e^{-\frac{5}{2} \tanh ^{-1}(a x)}}{x} \, dx\)

Optimal. Leaf size=248 \[ \frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}-\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )-\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

[Out]

(8*(1 - a*x)^(1/4))/(1 + a*x)^(1/4) + 2*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Sqrt[2]*ArcTan[1 - (Sqrt[2]*
(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - 2*ArcTanh[
(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(
1/4)]/Sqrt[2] - Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/Sqrt[2]

________________________________________________________________________________________

Rubi [A]  time = 0.204206, antiderivative size = 248, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 16, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 1.143, Rules used = {6126, 98, 21, 105, 63, 240, 211, 1165, 628, 1162, 617, 204, 93, 298, 203, 206} \[ \frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}-\frac{\log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt{2}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )+\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )-\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(E^((5*ArcTanh[a*x])/2)*x),x]

[Out]

(8*(1 - a*x)^(1/4))/(1 + a*x)^(1/4) + 2*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Sqrt[2]*ArcTan[1 - (Sqrt[2]*
(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)] - 2*ArcTanh[
(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] + Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(
1/4)]/Sqrt[2] - Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)]/Sqrt[2]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-\frac{5}{2} \tanh ^{-1}(a x)}}{x} \, dx &=\int \frac{(1-a x)^{5/4}}{x (1+a x)^{5/4}} \, dx\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+\frac{4 \int \frac{\frac{a}{4}+\frac{a^2 x}{4}}{x (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx}{a}\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+\int \frac{(1+a x)^{3/4}}{x (1-a x)^{3/4}} \, dx\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+a \int \frac{1}{(1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx+\int \frac{1}{x (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}-4 \operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{2-x^4}} \, dx,x,\sqrt [4]{1-a x}\right )+4 \operatorname{Subst}\left (\int \frac{x^2}{-1+x^4} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}-2 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+2 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-4 \operatorname{Subst}\left (\int \frac{1}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-2 \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-\operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )+\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )\\ &=\frac{8 \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}+2 \tan ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-\sqrt{2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )-2 \tanh ^{-1}\left (\frac{\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}-\frac{\log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt{2}}\\ \end{align*}

Mathematica [C]  time = 0.0632869, size = 90, normalized size = 0.36 \[ \frac{\sqrt [4]{1-a x} \left (-20 \text{Hypergeometric2F1}\left (\frac{1}{4},1,\frac{5}{4},\frac{1-a x}{a x+1}\right )+2^{3/4} (1-a x) \sqrt [4]{a x+1} \text{Hypergeometric2F1}\left (\frac{5}{4},\frac{5}{4},\frac{9}{4},\frac{1}{2} (1-a x)\right )+20\right )}{5 \sqrt [4]{a x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^((5*ArcTanh[a*x])/2)*x),x]

[Out]

((1 - a*x)^(1/4)*(20 - 20*Hypergeometric2F1[1/4, 1, 5/4, (1 - a*x)/(1 + a*x)] + 2^(3/4)*(1 - a*x)*(1 + a*x)^(1
/4)*Hypergeometric2F1[5/4, 5/4, 9/4, (1 - a*x)/2]))/(5*(1 + a*x)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.118, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x} \left ({(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x,x)

[Out]

int(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \left (\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x,x, algorithm="maxima")

[Out]

integrate(1/(x*((a*x + 1)/sqrt(-a^2*x^2 + 1))^(5/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.9718, size = 1191, normalized size = 4.8 \begin{align*} -\frac{4 \, \sqrt{2}{\left (a x + 1\right )} \arctan \left (\sqrt{2} \sqrt{\frac{a x + \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1}{a x - 1}} - \sqrt{2} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) + 4 \, \sqrt{2}{\left (a x + 1\right )} \arctan \left (\sqrt{2} \sqrt{\frac{a x - \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1}{a x - 1}} - \sqrt{2} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) + \sqrt{2}{\left (a x + 1\right )} \log \left (\frac{4 \,{\left (a x + \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1\right )}}{a x - 1}\right ) - \sqrt{2}{\left (a x + 1\right )} \log \left (\frac{4 \,{\left (a x - \sqrt{2}{\left (a x - 1\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - \sqrt{-a^{2} x^{2} + 1} - 1\right )}}{a x - 1}\right ) - 4 \,{\left (a x + 1\right )} \arctan \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}\right ) + 2 \,{\left (a x + 1\right )} \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) - 2 \,{\left (a x + 1\right )} \log \left (\sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) - 16 \, \sqrt{-a^{2} x^{2} + 1} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}}{2 \,{\left (a x + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x,x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(2)*(a*x + 1)*arctan(sqrt(2)*sqrt((a*x + sqrt(2)*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - s
qrt(-a^2*x^2 + 1) - 1)/(a*x - 1)) - sqrt(2)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) + 4*sqrt(2)*(a*x + 1)*arc
tan(sqrt(2)*sqrt((a*x - sqrt(2)*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - sqrt(-a^2*x^2 + 1) - 1)/(a*x -
 1)) - sqrt(2)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) + 1) + sqrt(2)*(a*x + 1)*log(4*(a*x + sqrt(2)*(a*x - 1)*sqr
t(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - sqrt(-a^2*x^2 + 1) - 1)/(a*x - 1)) - sqrt(2)*(a*x + 1)*log(4*(a*x - sqrt(2)
*(a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - sqrt(-a^2*x^2 + 1) - 1)/(a*x - 1)) - 4*(a*x + 1)*arctan(sqrt(
-sqrt(-a^2*x^2 + 1)/(a*x - 1))) + 2*(a*x + 1)*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) + 1) - 2*(a*x + 1)*log(s
qrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) - 16*sqrt(-a^2*x^2 + 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)))/(a*x + 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a**2*x**2+1)**(1/2))**(5/2)/x,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \left (\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x,x, algorithm="giac")

[Out]

integrate(1/(x*((a*x + 1)/sqrt(-a^2*x^2 + 1))^(5/2)), x)