3.1049 \(\int \frac{e^{2 \tanh ^{-1}(a x)} x^4}{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=63 \[ \frac{x^3}{3 a^2 c}+\frac{x^2}{a^3 c}+\frac{3 x}{a^4 c}+\frac{1}{a^5 c (1-a x)}+\frac{4 \log (1-a x)}{a^5 c} \]

[Out]

(3*x)/(a^4*c) + x^2/(a^3*c) + x^3/(3*a^2*c) + 1/(a^5*c*(1 - a*x)) + (4*Log[1 - a*x])/(a^5*c)

________________________________________________________________________________________

Rubi [A]  time = 0.111975, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {6150, 43} \[ \frac{x^3}{3 a^2 c}+\frac{x^2}{a^3 c}+\frac{3 x}{a^4 c}+\frac{1}{a^5 c (1-a x)}+\frac{4 \log (1-a x)}{a^5 c} \]

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcTanh[a*x])*x^4)/(c - a^2*c*x^2),x]

[Out]

(3*x)/(a^4*c) + x^2/(a^3*c) + x^3/(3*a^2*c) + 1/(a^5*c*(1 - a*x)) + (4*Log[1 - a*x])/(a^5*c)

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{e^{2 \tanh ^{-1}(a x)} x^4}{c-a^2 c x^2} \, dx &=\frac{\int \frac{x^4}{(1-a x)^2} \, dx}{c}\\ &=\frac{\int \left (\frac{3}{a^4}+\frac{2 x}{a^3}+\frac{x^2}{a^2}+\frac{1}{a^4 (-1+a x)^2}+\frac{4}{a^4 (-1+a x)}\right ) \, dx}{c}\\ &=\frac{3 x}{a^4 c}+\frac{x^2}{a^3 c}+\frac{x^3}{3 a^2 c}+\frac{1}{a^5 c (1-a x)}+\frac{4 \log (1-a x)}{a^5 c}\\ \end{align*}

Mathematica [A]  time = 0.037359, size = 49, normalized size = 0.78 \[ \frac{a^3 x^3+3 a^2 x^2+9 a x+\frac{3}{1-a x}+12 \log (1-a x)}{3 a^5 c} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*ArcTanh[a*x])*x^4)/(c - a^2*c*x^2),x]

[Out]

(9*a*x + 3*a^2*x^2 + a^3*x^3 + 3/(1 - a*x) + 12*Log[1 - a*x])/(3*a^5*c)

________________________________________________________________________________________

Maple [A]  time = 0.034, size = 61, normalized size = 1. \begin{align*}{\frac{{x}^{3}}{3\,{a}^{2}c}}+{\frac{{x}^{2}}{{a}^{3}c}}+3\,{\frac{x}{{a}^{4}c}}-{\frac{1}{c{a}^{5} \left ( ax-1 \right ) }}+4\,{\frac{\ln \left ( ax-1 \right ) }{c{a}^{5}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*x^4/(-a^2*c*x^2+c),x)

[Out]

1/3*x^3/a^2/c+x^2/a^3/c+3*x/a^4/c-1/c/a^5/(a*x-1)+4/c/a^5*ln(a*x-1)

________________________________________________________________________________________

Maxima [A]  time = 0.959523, size = 77, normalized size = 1.22 \begin{align*} -\frac{1}{a^{6} c x - a^{5} c} + \frac{a^{2} x^{3} + 3 \, a x^{2} + 9 \, x}{3 \, a^{4} c} + \frac{4 \, \log \left (a x - 1\right )}{a^{5} c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^4/(-a^2*c*x^2+c),x, algorithm="maxima")

[Out]

-1/(a^6*c*x - a^5*c) + 1/3*(a^2*x^3 + 3*a*x^2 + 9*x)/(a^4*c) + 4*log(a*x - 1)/(a^5*c)

________________________________________________________________________________________

Fricas [A]  time = 1.94782, size = 131, normalized size = 2.08 \begin{align*} \frac{a^{4} x^{4} + 2 \, a^{3} x^{3} + 6 \, a^{2} x^{2} - 9 \, a x + 12 \,{\left (a x - 1\right )} \log \left (a x - 1\right ) - 3}{3 \,{\left (a^{6} c x - a^{5} c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^4/(-a^2*c*x^2+c),x, algorithm="fricas")

[Out]

1/3*(a^4*x^4 + 2*a^3*x^3 + 6*a^2*x^2 - 9*a*x + 12*(a*x - 1)*log(a*x - 1) - 3)/(a^6*c*x - a^5*c)

________________________________________________________________________________________

Sympy [A]  time = 0.357478, size = 53, normalized size = 0.84 \begin{align*} - \frac{1}{a^{6} c x - a^{5} c} + \frac{x^{3}}{3 a^{2} c} + \frac{x^{2}}{a^{3} c} + \frac{3 x}{a^{4} c} + \frac{4 \log{\left (a x - 1 \right )}}{a^{5} c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*x**4/(-a**2*c*x**2+c),x)

[Out]

-1/(a**6*c*x - a**5*c) + x**3/(3*a**2*c) + x**2/(a**3*c) + 3*x/(a**4*c) + 4*log(a*x - 1)/(a**5*c)

________________________________________________________________________________________

Giac [A]  time = 1.18937, size = 95, normalized size = 1.51 \begin{align*} \frac{4 \, \log \left ({\left | a x - 1 \right |}\right )}{a^{5} c} - \frac{1}{{\left (a x - 1\right )} a^{5} c} + \frac{a^{4} c^{2} x^{3} + 3 \, a^{3} c^{2} x^{2} + 9 \, a^{2} c^{2} x}{3 \, a^{6} c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^4/(-a^2*c*x^2+c),x, algorithm="giac")

[Out]

4*log(abs(a*x - 1))/(a^5*c) - 1/((a*x - 1)*a^5*c) + 1/3*(a^4*c^2*x^3 + 3*a^3*c^2*x^2 + 9*a^2*c^2*x)/(a^6*c^3)